bannerbannerbanner
Моя жизнь в астрономии

Анатолий Черепащук
Моя жизнь в астрономии

Полная версия

В аспирантские годы пришлось мне поработать и учителем физики в средней школе поселка Научного, соседствующего с КрАО. Местный учитель физики был направлен на двухмесячные курсы повышения квалификации, и руководство школы предложило мне поработать вместо него в сентябре–октябре. Поскольку для меня дополнительный заработок был нелишним, я согласился. Преподавать физику мне пришлось в шестом и седьмом классах (младших), а также в восьмом–десятом классах (старших). В старших классах я быстро наладил дисциплину, вызвав к доске наиболее разболтанных учеников и дав им трудные задачи. Подержав их перед всем классом и продемонстрировав их беспомощность в решении трудных физических задач, я легко добился порядка в классе и уважения к себе со стороны учеников. Но я сделал большую ошибку, применив этот метод в младших классах. Оказывается, у учеников шестых–седьмых классов еще не развито чувство собственного достоинства и демонстрация их беспомощности в решении трудных задач не позволяет их укротить. Упоминание о том, что они – нерадивые ученики и плохо соображают, младшеклассников нисколько не огорчает, а, наоборот, веселит их и привлекает внимание всего класса. Поскольку учитель, как минер, ошибается один раз, сделав в начале своей педагогической карьеры эту ошибку, я так и не смог наладить дисциплину в младших классах. Ученики здесь меня не принимали всерьез на протяжении всего времени моей педагогической работы.

В начале 1970‑х годов Крымскую станцию ГАИШ посещал Рашид Сюняев, который, будучи теоретиком, старался ознакомиться с методами фотометрических наблюдений рентгеновских двойных систем. Сидя по ночам вместе с Витей Лютым около счетчика фотонов, он не переставал восхищаться тем, как это астрономам-наблюдателям удается регистрировать практически каждый фотон, приходящий из глубин космоса. Рашид тогда еще не осознавал того, что он обессмертил свое имя в науке, опубликовав в 1970–1972 годах совместно со своим учителем Я. Б. Зельдовичем две основополагающие статьи с описанием нового космологического эффекта, ныне именуемого как эффект Сюняева–Зельдовича. Рашид быстро завоевал доверие и уважение среди астрономов-наблюдателей и принимал участие во всех общественных мероприятиях на Крымской станции ГАИШ (поездки на море, вечеринки с игрой на гитарах, прогулки по различным местам Крыма и т. п.).

В 1971 году наступила эра рентгеновской астрономии – начал работать на орбите вокруг Земли специализированный американский рентгеновский спутник Uhuru. С его помощью было открыто около трех сотен компактных рентгеновских источников, большинство из которых представляют собой рентгеновские двойные системы. Рентгеновская двойная система состоит из нормальной оптической звезды, типа нашего Солнца, и релятивистского объекта – нейтронной звезды или черной дыры, находящегося в режиме аккреции вещества, поставляемого спутником – нормальной звездой. Вокруг релятивистского объекта образуется аккреционный диск (аккреция – это падение вещества в гравитационном поле релятивистского объекта). Из-за огромного гравитационного потенциала вблизи релятивистского объекта скорости движения вещества во внутренних частях аккреционного диска достигают гигантских значений, порядка скорости света. Взаимное трение газовых потоков и их столкновения приводят к разогреву плазмы до температур в десятки миллионов градусов и огромному выделению энергии в виде квантов рентгеновского излучения. Поэтому рентгеновская двойная система видна как мощный источник рентгеновского излучения. Если релятивистский объект – быстро вращающаяся нейтронная звезда с сильным магнитным полем, в рентгеновской двойной системе может наблюдаться феномен рентгеновского пульсара.

На это впервые обратили внимание азербайджанские астрономы П. Амнуэль и О. Гусейнов. В этом случае мощное рентгеновское излучение строго промодулировано периодом вращения нейтронной звезды. Если же в рентгеновской двойной системе имеется черная дыра, феномена рентгеновского пульсара не должно наблюдаться ввиду того, что черная дыра обладает лишь горизонтом событий и не имеет твердой наблюдаемой поверхности с «привязанным» к ней магнитным полем. От аккрецирующей черной дыры могут наблюдаться лишь хаотические изменения рентгеновского излучения на временах вплоть до 10-3 секунды. Кроме того, от аккрецирующей черной дыры могут наблюдаться квазипериодические (но не строго периодические) осцилляции рентгеновского излучения. Большинство описанных особенностей аккрецирующих нейтронных звезд и черных дыр были предсказаны и описаны в знаменитых работах академика Я. Б. Зельдовича и его учеников в конце 1960‑х и начале 1970‑х годов, до начала эры систематических рентгеновских наблюдений неба. И все эти теоретические предсказания блестяще подтвердились наблюдениями. Благодаря этим теоретическим предсказаниям природа компактных рентгеновских источников была быстро понята, и был сделан вывод об открытии рентгеновских двойных систем. За эти открытия руководитель рентгеновского космического эксперимента Uhuru профессор Риккардо Джиаккони в 2002 году был удостоен Нобелевской премии. Тематика, посвященная черным дырам, нейтронным звездам, аккреции, рентгеновским двойным системам, активно обсуждалась на Объединенном астрофизическом семинаре. Мы, молодые сотрудники ГАИШ, регулярно посещали этот знаменитый семинар, что позволяло нам быть в курсе всех новейших данных.

На меня особое впечатление произвела работа Я. Б. Зельдовича, опубликованная в 1964 году в Докладах АН СССР, об аккреции вещества на черную дыру. Здесь было показано, что несферическая аккреция вещества на черную дыру может приводить к гигантскому выделению энергии. В работе И. Д. Новикова и Я. Б. Зельдовича, вышедшей в 1966 году, было предсказано мощное выделение энергии в виде рентгеновского излучения при несферической аккреции вещества на релятивистские объекты. В 1966 году Я. Б. Зельдович и О. Х. Гусейнов опубликовали список тесных двойных систем, которые, возможно, содержат черные дыры. Здесь же было отмечено, что, изучая движение оптической звезды в двойной системе с невидимым спутником, можно оценить массу этого спутника. Меня эти работы очень взволновали – стало ясно, что черные дыры, несмотря на то что они «черные», можно реально наблюдать в рентгеновском диапазоне спектра, а по движению оптической звезды в двойной системе можно определять их массы и тем самым отличать черные дыры от нейтронных звезд. Как известно, под черной дырой понимается область пространства-времени, гравитационное поле которой столь сильно, что никакой сигнал, даже свет, не может вырваться из нее на пространственную бесконечность. Согласно современным представлениям, если масса ядра звезды, претерпевшего термоядерные превращения, превышает три солнечные массы, то в конце эволюции звезды образуется черная дыра. Если же масса этого ядра менее трех солнечных, то в конце эволюции такой звезды образуется нейтронная звезда или белый карлик. Поэтому возможность «взвешивать» релятивистские объекты превращает тесные двойные системы в мощный инструмент исследования принципиально новых объектов во Вселенной – черных дыр. Для меня, специалиста по физике тесных двойных систем с пекулярными компонентами, это был настоящий подарок судьбы. Важно было не упустить выпавший на мою долю шанс. И я этот уникальный шанс включиться в работы по релятивистской астрофизике постарался не упустить.

В 1969 году в «Астрономическом журнале» вышла статья Я. Б. Зельдовича и Н. И. Шакуры об аккреции вещества на одиночную нейтронную звезду без магнитного поля, в которой была дана интерпретация спектра рентгеновского излучения источника Sco X-1 – первого компактного рентгеновского источника, обнаруженного за пределами Солнечной системы. В том же 1969 году была опубликована статья Г. С. Бисноватого-Когана и А. М. Фридмана по теории аккреции вещества на замагниченную нейтронную звезду. В 1972 году вышла в свет работа Н. И. Шакуры по теории дисковой аккреции вещества в двойных системах на релятивистские объекты. В 1973 году появилась ныне знаменитая статья Н. И. Шакуры и Р. А. Сюняева по теории аккреционных α-дисков. В 1972 году английские астрономы Дж. Прингл и М. Рис опубликовали статью о дисковой аккреции вещества на релятивистский объект. В 1973 году И. Д. Новиков и К. Торн (США) построили теорию дисковой аккреции вещества на релятивистский объект с учетом эффектов Общей теории относительности (ОТО). Следует особо отметить, что еще в 1967 году И. С. Шкловский указал на рентгеновский источник Sco X-1 как на возможную аккрецирующую нейтронную звезду в двойной системе. Этот «звездопад» блестящих работ непрерывно подпитывал мой интерес к проблеме исследования рентгеновских двойных систем.

В 1972 году с борта спутника Uhuru была открыта первая затменная рентгеновская двойная система Cen X-3. Система в рентгеновском диапазоне спектра показывает строго периодические затмения П-образной формы, что свидетельствует о том, что затмеваемый объект имеет очень малые размеры по сравнению с радиусом затмевающей звезды. Период следования рентгеновских затмений составил ~ 2,1 суток, причем в середине затмений рентгеновская светимость объекта спадала почти до нуля. Рентгеновский источник в этой системе оказался рентгеновским пульсаром с периодом ~ 4,8 секунды, то есть из наблюдений прямо следовало, что рентгеновский источник в данном случае, скорее всего, является нейтронной звездой. Для определения массы рентгеновского источника в системе Cen X-3 требовалось вначале отождествить его с оптической звездой, что было весьма непросто сделать. Дело в том, что квадрат ошибок рентгеновского телескопа спутника Uhuru был весьма большим – порядка 1°. Внутри этого квадрата расположены сотни звезд, и необходимо выделить среди них одну, физически связанную с рентгеновским источником. Одним из способов решения этой трудной задачи является изучение оптической переменности звезд в квадрате ошибок. Та звезда, у которой период оптической переменности совпадает с периодом переменности рентгеновского излучения исследуемого рентгеновского источника, и может с большой вероятностью рассматриваться как оптическая компонента рентгеновской двойной системы. Изучая ее движение спектроскопическими и фотометрическими методами, можно определить массу релятивистского объекта. Прелесть двойных систем состоит в том, что именно движение оптического спутника несет основную информацию о массе рентгеновской компоненты.

 

В начале 1972 года в коридоре ГАИШ меня встретил Юрий Николаевич Ефремов, в дальнейшем профессор, главный научный сотрудник, лауреат Ломоносовской премии МГУ. Он сказал, что И. С. Шкловский попросил его, используя картотеку Общего каталога переменных звезд (ОКПЗ), найти в пределах квадрата ошибок системы Cen X-3 переменную звезду с периодом изменения блеска, близким к рентгеновскому периоду Cen X-3. Юрий Николаевич нашел такую звезду. Ею оказалась затменная двойная система LR Cen, орбитальный период которой с точностью до 0,4% совпадал с рентгеновским периодом системы Cen X-3. Он попросил меня, как специалиста по тесным двойным системам, определить параметры этой системы. Я с радостью согласился, и в течение нескольких дней провел анализ оптической кривой блеска системы LR Cen. Это оказалась классическая затменная двойная система типа Алголя с круговой орбитой, глубоким главным затмением и небольшим вторичным минимумом. Вне затмений наблюдались небольшие изменения блеска, обусловленные эффектами взаимной близости компонент – эффектом эллипсоидальности и эффектом отражения. Используя стандартный аппарат теории классических затменных систем, я определил радиусы компонент в долях радиуса орбиты, их относительные светимости и наклонение орбиты. Все эти параметры ничем не отличались от характеристик обычных звезд. Никаких особых аномалий я не нашел. Лишь с большой натяжкой можно было связывать высокую оптическую светимость более яркой компоненты системы с процессами аккреции вещества второй звезды на релятивистский объект. Мы честно изложили все эти результаты в нашей статье за подписью трех авторов – И. С. Шкловский, Ю. Н. Ефремов и А. М. Черепащук – и послали ее в очень авторитетный международный журнал Nature.

При этом в статье мы также отмечали, что совпадение оптического и рентгеновского периодов имеет место всего лишь с точностью до 0,4% и необходимо проверить дальнейшими наблюдениями равенство периодов с большей точностью. Журнал Nature – журнал для экспресс-информации. И если статья получает положительные отзывы рецензентов (рецензирование там очень строгое), то она быстро публикуется, в течение пары месяцев. Прождав полгода и не получив никаких известий из редакции журнала, мы, для страховки, опубликовали нашу статью в «Астрономическом циркуляре» на русском языке. Более того, И. С. Шкловский решил послать телеграмму за нашими тремя подписями в Международный центр астрономических телеграмм (это издание обозначается как IAU Circular). Телеграмма не была опубликована. И вдруг, уже в конце 1972 года, в ГАИШ приходит очередной номер Nature, в котором опубликованы две статьи по системе LR Cen: наша и еще одного, уже зарубежного автора (не буду из деликатности называть его фамилии). Поразительно то, что корректура нашей статьи (пробная версия статьи, где можно выполнять исправления опечаток) нам не присылалась. Точнее говоря, мы ее не получали (в те времена в СССР зарубежная переписка ученых строго контролировалась, и возможно, что корректура затерялась при пересечении границы). С чем была связана такая большая задержка публикации нашей статьи, остается только гадать. Но, принимая во внимание то, что наша телеграмма не была опубликована, не исключено, что эта задержка была обусловлена большой престижностью нашей публикации (первое в мире оптическое отождествление рентгеновской двойной системы) и желанием некоторых зарубежных коллег не упустить приоритет.

Так что мы, ученые, даже в советские времена жили в условиях рыночной экономики, где жесткая конкуренция существует всегда, когда речь идет о приоритетных результатах. Ирония судьбы состоит в том, что впоследствии, по мере накопления новых наблюдательных данных по системе LR Cen, выяснилось, что различие в 0,4% в орбитальном периоде этой системы и рентгеновском периоде системы Cen X-3 оказалось значимым. Таким образом, изученная нами затменная двойная система LR Cen оказалась не связанной с рентгеновским источником Cen X-3. Этот источник оставался долго (около двух лет) не отождествленным с оптической звездой. И только в 1974 году замечательному польскому астроному, работавшему в США, Войтеку Кшеминскому удалось отождествить источник Cen X-3 с сильно покрасненной за счет межзвездного поглощения горячей массивной звездой спектрального класса O. Эта звезда и соответствующая рентгеновская двойная система Cen X-3 стала называться в его честь звездой Кшеминского. Звезда Кшеминского оказалась лежащей за пределами 90-процентного квадрата ошибок, что и объяснило те трудности, которые астрономы испытали при оптическом отождествлении рентгеновского источника Cen X-3, первой открытой затменной рентгеновской двойной системы.

Первое же настоящее оптическое отождествление рентгеновской двойной системы было выполнено в 1972 году в ГАИШ Николаем Ефимовичем Курочкиным, и полгода спустя это отождествление было подтверждено американскими астрономами Джоном и Нетой Бакалл. После публикации данных по источнику Cen X-3 научная группа спутника Uhuru опубликовала данные о втором открытом ими затменном двойном рентгеновском источнике – Her X-1. Период следования рентгеновских затмений составил ~ 1,7 суток. Рентгеновский источник показывает феномен рентгеновского пульсара с периодом 1,24 секунды. В ГАИШ, помимо картотеки ОКПЗ, содержащей сведения о десятках тысяч переменных звезд, имеется также уникальная коллекция фотоснимков всего северного звездного неба, начало которой было положено нашими учителями еще в 1890 году.

Коллекция содержит свыше 60 тысяч фотопластинок, причем каждая область северного неба отснята от десятков до сотен раз. Так что эта коллекция – прекрасный материал для исследования переменных звезд. В настоящее время эта коллекция фотоснимков переводится в цифровую форму с помощью специальных сканнеров. Оказалось, что в квадрате ошибок рентгеновского источника Her X-1 содержится внесенная в ОКПЗ переменная звезда HZ Her, которая классифицировалась как неправильная переменная. Николай Ефимович померил блеск этой звезды по пластинкам фототеки ГАИШ и обработал эти значения блеска HZ Her с известным из рентгеновских данных периодом 1,7 суток. Получилась четкая регулярная кривая блеска, имеющая вид одной волны за орбитальный период с амплитудой около одной звездной величины. По форме кривая блеска HZ Her была очень похожа на кривую блеска пульсирующей переменной звезды-цефеиды. Н. Е. Курочкин вначале так и предполагал, что HZ Her – это цефеида. Однако с этим был не согласен главный специалист по исследованию цефеид Юрий Николаевич Ефремов. Он высказал идею о том, что главная причина сильной оптической переменности HZ Her – это эффект прогрева оптической звезды рентгеновским излучением аккрецирующего релятивистского объекта в двойной системе (эффект отражения). Поскольку мы с Юрием Николаевичем уже имели опыт совместного исследования затменной двойной системы LR Cen, он пришел ко мне и предложил обсудить эту идею.

Я сразу понял, что Юрий Николаевич прав. Нужно было лишь количественно обосновать огромную амплитуду эффекта отражения в системе HZ Her, поскольку в классических тесных двойных системах амплитуда оптической переменности блеска, обусловленная эффектом отражения, весьма мала (порядка нескольких процентов). Это связано с тем, что телесный угол облучаемой звезды весьма мал и она перехватывает лишь малую долю энергии облучающей звезды. Поэтому на фоне суммарного оптического излучения обеих звезд добавка, связанная с эффектом отражения, не превышает нескольких процентов. В системе HZ Her ситуация кардинально отличается от случая классической двойной системы.

Во-первых, в этой системе мощный рентгеновский источник практически не дает вклада в суммарную оптическую светимость системы, поэтому эффект отражения на оптической звезде здесь выступает в «чистом» виде. Во-вторых, рентгеновская светимость компактного объекта в 100 раз превышает светимость оптической звезды. Поэтому поток рентгеновского излучения, падающего на сторону оптической звезды, обращенную к рентгеновскому источнику, в несколько раз превышает поток собственного оптического излучения, выходящего из атмосферы невозмущенной звезды (ситуация напоминает облучение планеты Венера солнечным светом). Это приводит к тому, что часть поверхности оптической звезды, обращенная к рентгеновскому источнику, имеет среднюю температуру в несколько раз большую, чем температура невозмущенной части звезды. Благодаря орбитальному движению в двойной системе оптическая звезда поворачивается к наблюдателю то прогретой горячей, то непрогретой относительно холодной частью. Это и приводит к орбитальному изменению блеска системы HZ Her, имеющему вид одной волны за период, амплитудой около одной звездной величины. Огромная светимость рентгеновского источника в системе HZ Her вполне соответствовала предсказаниям теории дисковой аккреции вещества на релятивистский объект, сделанным в работе Н. И. Шакуры и Р. А. Сюняева. Препринт этой работы был опубликован в 1972 году, и с ним мы уже успели ознакомиться. Поэтому мы обсудили наши результаты по HZ Her с авторами теории дисковой аккреции. Затем мы показали наши результаты Я. Б. Зельдовичу, который воспринял их с большим интересом и рекомендовал срочно опубликовать.

Нам удалось также убедить в правильности нашей модели Николая Ефимовича Курочкина, и весной 1972 года в международном экспресс-издании IBVS появилась статья за подписью пяти авторов – А. М. Черепащука, Ю. Н. Ефремова, Н. Е. Курочкина, Н. И. Шакуры и Р. А. Сюняева, – в которой мы опубликовали данные по оптической переменности системы HZ Her и интерпретировали эту переменность как эффект отражения, точнее эффект прогрева поверхности оптической звезды мощным рентгеновским излучением аккрецирующей нейтронной звезды. Наша статья была опубликована довольно быстро, и на нее сразу пошли ссылки в мировой научной литературе. Полгода спустя в Astrophysical Journal Letters была опубликована аналогичная статья американских астрономов, супругов Джона и Неты Бакалл.

Астрономы часто сталкиваются с эффектом отражения в классических затменных двойных системах. Обычно величина эффекта отражения в таких системах, как уже упоминалось, невелика – составляет всего несколько процентов. Но в системе HZ Her почти 100% оптической переменности вызвано эффектом отражения. Это был первый случай в практике астрономических исследований, когда эффект отражения является определяющим и выглядит в «чистом виде». В системе Her X-1 наблюдается также долгопериодическая переменность рентгеновского излучения с периодом около 35 суток, связанная с прецессией аккреционного диска. В некоторых фазах прецессионного 35-дневного периода рентгеновский источник «выключается». Однако сильный эффект отражения в оптической переменности HZ Her при этом не выключается и остается значительным. Отсюда мы сделали вывод о том, что природа «выключения» рентгеновского излучения связана не с физическим затуханием рентгеновского источника, а с экранированием центрального рентгеновского источника внешними частями прецессирующего аккреционного диска. Таким образом, благодаря эффекту отражения мы можем судить о наличии рентгеновского излучения даже в том случае, когда рентгеновский источник не виден земному наблюдателю.

В 1972 году череда сообщений об открытиях в области рентгеновской астрономии шла непрерывно. Это было «золотое время» для развития науки о тесных двойных звездах. Ученых уже несколько лет волновала природа мощного компактного рентгеновского источника Cyg X-1, расположенного в созвездии Лебедь. Этот источник показывал быструю иррегулярную рентгеновскую переменность на временах до 0,001 секунды. Никаких признаков рентгеновского пульсара источник Cyg X-1 не показывал. Не показывал он также и регулярной затменной переменности рентгеновского излучения. Поэтому его было очень трудно отождествлять с оптической звездой. Помогла радиоастрономия. Однажды рентгеновский спектр источника Cyg X-1 испытал сильные изменения, и это явление совпало с мощной радиовспышкой от этого источника. Поскольку радиоастрономическим методом координаты радиоисточников определяются весьма точно – с точностью лучше угловой секунды, в пределах такой малой области на небе удалось найти сравнительно яркую голубую звезду примерно девятой звездной величины. В оптическом спектре этой звезды были найдены линии поглощения водорода и гелия с эмиссионными компонентами, что нехарактерно для «нормальных» звезд такого спектрального класса. Поэтому был сделан вывод о том, что это и есть оптическая компонента рентгеновского источника Cyg X-1.

Весной 1972 года в Москву с Крымской станции ГАИШ приехал Витя Лютый (он постоянно там работал). Витя показал мне свои UBV фотоэлектрические наблюдения звезды – оптической компоненты рентгеновского источника Cyg X-1. Он пытался определить по своим данным орбитальный период системы Cyg X-1, но из‑за немногочисленности наблюдательных точек это ему не удавалось сделать. Буквально на следующий день, войдя в зал библиотеки ГАИШ (я каждый день туда заходил, чтобы посмотреть новости, – тогда интернета еще не было), я увидел на выставке свежий номер журнала Nature. На обложке этого журнала красовалась картинка с кривой лучевых скоростей системы Cyg X-1 и крупными буквами было написано: Cyg X-1 – двойная система. Это была реклама знаменитой статьи английских ученых Л. Вебстер и П. Мардина, содержащейся в этом номере журнала. В этой статье авторы, выполнив спектральные наблюдения оптической звезды в системе Cyg X-1, измерили ее лучевую скорость и обнаружили, что она переменна с периодом ~ 5,6 суток и полуамплитудой ~ 70 км/с. Это прямо свидетельствовало о том, что оптическая звезда в системе Cyg X-1 вращается вокруг невидимого в оптическом диапазоне спектра и весьма массивного объекта. Я срочно информировал Витю Лютого об этой статье и о значении орбитального периода 5,6 суток. Обработав свои наблюдения с этим периодом, Витя получил хорошую регулярную кривую блеска, которая, в отличие от системы HZ Her, представляла собой двойную волну за орбитальный период с весьма небольшой амплитудой, примерно 5% от среднего значения (пять сотых звездной величины). Витя пришел в восторг от этих результатов и предложил мне быть соавтором соответствующей статьи. Но я отказался, так как мой вклад в эту работу был не очень велик. Мы договорились, что Витя в этой статье выразит мне благодарность за обсуждение работы, а также передаст мне таблицу своих фотометрических наблюдений системы Cyg X-1 для дальнейшего анализа. Этот анализ мы выполнили вдвоем с Рашидом Алиевичем Сюняевым, аспирантом Я. Б. Зельдовича, который тогда руководил отделом в Институте прикладной математики (ИПМ) АН СССР. После того как Яков Борисович одобрил нашу статью по эффекту отражения в системе HZ Her, мы старались больше общаться с ним и учениками. Яков Борисович в то время увлекался релятивистской астрофизикой (точнее, был одним из ее создателей), и его большой мечтой было открыть черную дыру. Поэтому он живо интересовался исследованиями рентгеновских двойных систем. А для нас, молодых астрономов, его экспертиза наших результатов была очень важной и полезной.

 

Надо особо отметить, что приход Якова Борисовича в астрофизику буквально осветил новым светом многие, казалось бы, уже изученные и ставшие классическими области этой науки. В частности, в проблеме физики звезд Яков Борисович развил новый аспект – поздние стадии эволюции звезд и формирование нейтронных звезд и черных дыр.

Наша схема рассуждений с Рашидом Сюняевым была следующей (в узком кругу мы зовем друг друга по имени ввиду многолетних дружеских отношений). Функция масс оптической звезды в системе Cyg X-1, измеренная Вебстер и Мардином, составляет 0,2 солнечной массы. То есть масса релятивистского объекта (рентгеновского источника) превышает 0,2 солнечной массы (функция масс оптической звезды в рентгеновской двойной системе является абсолютным нижним пределом для массы рентгеновского источника). Это очень малое значение нижнего предела массы релятивистского объекта. Оно не позволяет судить о том, является ли релятивистский объект нейтронной звездой или черной дырой. Нужны дополнительные ограничения на значения наклонения орбиты i в системе и на отношение масс компонент


где mx – масса рентгеновского источника, mv – масса оптической звезды. Особенно сильно окончательная оценка величины mx зависит от наклонения орбиты i. Величину i можно оценить, если двойная система является затменной системой, в этом случае i близко к 90°. Однако при таких значениях i масса релятивистского объекта, оцениваемая по функции масс, получается около одной солнечной, что характерно для нейтронных звезд. Но тогда почему источник Cyg X-1 не является рентгеновским пульсаром? Тем более что, согласно теории дисковой аккреции Шакуры–Сюняева, оптическая светимость аккреционного диска должна быть относительно малой и оптические затмения в системе Cyg X-1 даже при i ≈ 90° должны иметь малую глубину, менее 1%. А кривая блеска системы Cyg X-1 имеет вид двойной волны за период амплитудой ~ 5%. Это позволило нам заключить, что главной причиной оптической переменности системы Cyg X-1 является эффект эллипсоидальности оптической звезды, которая является горячей массивной звездой спектрального класса B0Ib и для которой, ввиду ее высокой оптической светимости, эффект рентгеновского прогрева является несущественным. Эффект эллипсоидальности связан с приливной деформацией оптической звезды в гравитационном поле релятивистского объекта. В результате этой деформации звезда становится эллипсоидальной и даже грушевидной. Орбитальное движение оптической звезды в этом случае приводит к характерной переменности блеска, имеющей вид двойной волны: два максимума и два минимума за период, что как раз и наблюдается в системе Cyg X-1. Используя приближенную теорию эффекта эллипсоидальности, развитую в работах Г. Рассела, С. Чандрасекара, Д. Я. Мартынова, я по амплитуде оптической переменности системы Cyg X-1 оценил наклонение орбиты для этой системы, которое оказалось значительно меньше 90°. С этим значением i у нас получилась оценка массы релятивистского объекта mx > 5,6 солнечной массы, что заведомо превышало значение 3 М, абсолютный верхний предел масс нейтронных звезд. Поэтому мы сделали вывод о том, что рентгеновский источник в системе Cyg X-1 является черной дырой. Все эти результаты летом 1972 года мы доложили на семинаре отдела Я. Б. Зельдовича в ИПМ. Яков Борисович решительно поддержал нашу работу и рекомендовал доложить ее на ОАС. Через некоторое время мы доложили эту работу на Объединенном астрофизическом семинаре в ГАИШ. Это было мое первое выступление на ОАС. В конференц-зале ГАИШ сидели ведущие физики, астрофизики и астрономы страны. Я волновался, когда докладывал нашу работу, но доклад прошел успешно. Яков Борисович попросил Соломона Борисовича Пикельнера (он тогда был ответственным секретарем редакции «Астрономического журнала») опубликовать нашу статью вне очереди в «Астрономическом журнале». При поддержке Соломона Борисовича статья была опубликована в ближайшем номере «Астрономического журнала» в начале 1973 года. Авторы статьи: В. М. Лютый, Р. А. Сюняев, А. М. Черепащук. Кроме того, Рашиду удалось организовать через ИПМ публикацию препринта нашей статьи на английском языке. Этот препринт мы срочно разослали в ведущие мировые астрономические центры. В итоге эта статья быстро завоевала популярность, и на нее в течение последующих пяти лет шли непрерывные ссылки в международных журналах.

Кстати, почти одновременно с нашей публикацией вышла статья английского астрофизика Уокера, где он интерпретировал оптическую переменность системы Cyg X-1 как затменную переменность и сделал вывод о том, что релятивистский объект в системе Cyg X-1 является нейтронной звездой. Все последующие исследования подтвердили нашу модель системы Cyg X-1 и нашу оценку массы черной дыры. Таким образом, нам удалось выполнить одну из первых оценок массы черной дыры в рентгеновской двойной системе.

1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26 
Рейтинг@Mail.ru