Венцом высокомерно-пренебрежительного отношения современных российских властей к науке и ученым явилась проведенная в июне–сентябре 2013 года так называемая реформа Российской академии наук, созданной Петром Великим почти 300 лет тому назад.
Действуя нагло и нахраписто, высокопоставленные российские чиновники осуществили большевистское раскулачивание РАН, отняв у нее собственность, которая была подарена ей Российским государством в знак признания заслуг советских и российских ученых в деле развития экономики страны и укрепления ее обороноспособности. От разгрома Российскую академию наук не спасли даже ее заслуги в создании ракетно-ядерного щита, который обеспечивает прочный государственный суверенитет страны. Российская академия наук, наряду с армией и флотом, является одним из столпов российской государственности. Приходится лишь гадать, почему российские власти решили сами себя кастрировать. Воистину, если Бог решает наказать людей, Он сначала отнимает у них разум…
Владимир Платонович всегда высоко оценивал мои работы по физике тесных двойных систем. Ему нравилось, что эти работы вносят некую свежую струю идей в, казалось бы, сугубо классическую и досконально проработанную область астрономических исследований. Мне такая оценка была особенно дорога ввиду того, что я еще в десятилетнем возрасте зачитывался книгами В. П. Цесевича.
В дальнейшем, уже будучи доктором наук, я практически ежегодно (летом) бывал в Астрономической обсерватории Одесского университета, с которой ГАИШ заключил договор о научном сотрудничестве. Я с благодарностью вспоминаю гостеприимство моих одесских коллег и друзей, особенно Вали Каретникова и Вани Андронова, у которых я часто бывал дома в гостях. С профессором Валентином Григорьевичем Каретниковым, директором этой обсерватории, мы дружили семьями. С В. Г. Каретниковым нам удалось написать несколько хороших статей на тему об эволюции тесных двойных систем (см. ниже).
Монография «Затменные переменные звезды» вышла в свет в 1971 году. Она переведена на английский язык и получила высокую оценку мировой астрономической общественности. Так закончился период становления меня как самостоятельного научного работника.
Не могу не сказать также о других событиях моего аспирантского периода. В начале моего пребывания в аспирантуре физического факультета МГУ (когда мне было двадцать пять лет) я получил неожиданное свидетельство о том, что я уже не совсем молодой человек. В середине 1960‑х годов в Москве проходила летняя спартакиада народов СССР. В это время в общежитиях МГУ (которые были свободны в связи с отъездом студентов на летние каникулы) разместились многочисленные команды молодых спортсменов. Мы познакомились с группой девушек-гимнасток в возрасте шестнадцати-семнадцати лет, перворазрядниц и кандидатов в мастера спорта. Поскольку пребывание в главном здании МГУ было для них большим и радостным событием, мы, аспиранты физфака МГУ, с удовольствием водили их по аудиториям физического факультета, показывали им прекрасную панораму Москвы с высоты двадцать восьмого этажа главного здания МГУ и рассказывали о прелестях нашей университетской жизни. В общем, мы подружились и часто по вечерам встречались и гуляли по Ленинским горам. Однажды мы назначили встречу около входа в столовую № 8 на территории МГУ, недалеко от здания ГАИШ. В назначенное время, направляясь от здания ГАИШ к столовой № 8, мы вдруг слышим, как из‑за угла столовой раздается звонкий голос одной из наших молодых знакомых гимнасток: «Что-то наши старички опаздывают!» В тот момент я впервые осознал, что я взрослый человек и с точки зрения шестнадцатилетней девушки уже являюсь стариком… Таковы, к сожалению, неумолимые законы нашей жизни.
Илл. 12. На Белом море. Соловецкие острова, 1964 г.
Летом 1964 года, в составе студенческого стройотряда под руководством Володи Андрияхина, я поехал на Соловки добывать на Белом море морские водоросли – ламинарию и альфенцию. Володя Андрияхин был активным организатором студенческих строительных отрядов. Он также возил стройотряды на строительство Пущинского научного центра АН СССР. Володя пользовался большим авторитетом среди студентов и аспирантов МГУ. Это был надежный друг и товарищ. Мне посчастливилось быть на его свадьбе. Нас в соловецком отряде было тридцать два человека: шестнадцать девушек и шестнадцать парней. Каждое утро нас, мужчин, с помощью большого катера развозили на специальных лодках-карбасах на отмели во время отлива на море. С помощью специальных якорей-драг мы вытаскивали водоросли в карбасы и затем доставляли их на берег, на остров. Затем девушки занимались просушиванием этих водорослей, раскладывая их на солнцепеках. Погода на Севере очень неустойчивая – жаркое солнце часто сменялось холодными дождями и ветрами. Поэтому разложенные для просушки водоросли надо было собирать в кучи и накрывать брезентом. В общем, и для парней, и для девушек работа была нелегкой. Но все эти трудности компенсировались возможностью созерцать замечательные красоты Севера. Поскольку мы располагались около Северного полярного круга, Солнце двигалось почти параллельно горизонту. Вода на Белом море имеет специфический планктон, который рассеивает белый свет. Поэтому Белое море – действительно белое. Когда оно освещается косыми солнечными лучами, то в нем присутствуют разнообразные и очень красивые оттенки от белесого до розовых и красных. В общем, картина как на пейзажах Рокуэлла Кента.
На Заяцких островах, где мы жили, было очень много зайцев. Поскольку у нас были малокалиберные винтовки, мы охотились на зайцев и затем употребляли их в пищу. Однажды к нам приехали очень веселые и доброжелательные жители другого острова и стали расспрашивать, как мы живем, чем питаемся. Мы рассказали, как мы охотимся на зайцев. Вдруг наши гости сменили тон и строго спросили: «А вы знаете, что охотничий сезон еще не наступил?» Оказалось, что наши гости – работники природоохраны. Услышав наши выстрелы, они приехали к нам, чтобы навести порядок. Но их так тронуло наше простодушие, что они не стали применять к нам строгие меры, а ограничились тем, что забрали у нас винтовки. В конце нашей миссии мы заехали к ним, и они вернули нам наши винтовки. Мы побывали также в Соловецком монастыре и занимались его реставрацией. После нас в течение нескольких лет физический факультет МГУ организовывал стройотряды для выполнения работ по реставрации Соловецкого монастыря. Припоминаю еще один забавный эпизод из моей жизни, связанный с пребыванием на Соловках. После похода в море и напряженного труда нам очень хотелось есть. Однако нас кормили весьма скромно: обычно две банки тушенки бросались в большой казан с вареными макаронами. И все это на тридцать два человека! Таким же скромным было и питье: две банки сгущенки кидались в большой чайник с кипящей водой, заваренной заменителем кофе. Каждый раз после такого обеда я думал: «Вот вернусь в Москву, куплю две банки тушенки, две банки сгущенки и все это съем один». И действительно, вернувшись в Москву и поселившись в общежитии МГУ, я пошел в гастроном, купил две банки тушенки и две банки сгущенки, буханку хлеба, заварил литровую банку чая и стал все это есть. Две банки тушенки я съел и, кроме того, одолел одну банку сгущенки. А вот на вторую банку сгущенки сил у меня уже не хватило. Такова была наша аспирантская веселая жизнь.
Во время пребывания в аспирантуре я стал более активно участвовать в работе агитбригады физического факультета МГУ. В студенческие годы я напряженно работал, ликвидировал пробелы моего образования, и у меня не было времени регулярно участвовать в художественной самодеятельности. А во время обучения в аспирантуре у меня было больше свободного времени, я познакомился с нашими знаменитыми бардами Сергеем Никитиным, его будущей женой Таней Садыковой, с Геной Ивановым, Валерой Канером, Сергеем Крыловым. В составе агитбригады мы посетили ряд городов нашей страны (Свердловск, Кишинев и др.), где выступали с концертами. В каждом городе, перед тем как дать нам разрешение на выступления, специальная комиссия горкома комсомола устраивала нам контрольное прослушивание. Поскольку я играл на гитаре классику, меня часто выпускали на таких прослушиваниях первым. Я исполнял на гитаре первую часть Лунной сонаты Бетховена. Ввиду того, что произведения Бетховена очень любил В. И. Ленин, нам сразу давали зеленый свет на выступления в городских клубах, школах, институтах и других публичных местах.
Илл. 13. Выступление на конкурсе худсамодеятельности во Дворце культуры МГУ. 1963 г.
В аспирантские годы я также участвовал в ежегодных университетских конкурсах художественной самодеятельности. Выступал с сольными номерами: играл на гитаре классику. Гитара – очень трудный инструмент. Волнение исполнителя и малейшая его неуверенность немедленно отражаются на качестве исполнения сложных музыкальных пьес. Когда на гитаре играешь сложные произведения для себя или друзей в узком кругу, то все хорошо получается. Однако когда выходишь на сцену и видишь глаза сотен людей, сидящих в зале, то пальцы деревенеют и легкость исполнения теряется, поэтому часто делаешь ошибки при игре (выдаешь «лажу», как говорят гитаристы-профессионалы). Однажды мне особенно повезло – я, выступая на конкурсе МГУ, безошибочно исполнил на гитаре вальс Иванова-Крамского и этюд-тремоло «Воспоминания об Альгамбре» из репертуара аргентинской гитаристки Марии Луизы Анидо. В итоге я занял призовое место в общеуниверситетском конкурсе худсамодеятельности и получил в подарок роскошный кожаный кошелек. И хотя этот кошелек у меня чаще всего был почти пустым, я его с гордостью носил в своем кармане, ощущая себя одним из победителей трудного общеуниверситетского конкурса.
Вообще, культурная и спортивная жизнь в МГУ в те годы била ключом. В мае каждого года на ступеньках физфака проходило празднование Дня физика. На празднике Дня физика в 1961 году присутствовал Нильс Бор. Я был на этом празднике и стоял недалеко от этого великого физика. Сопровождал Бора и осуществлял синхронный перевод его выступления академик Л. Д. Ландау. На одном из празднований Дня физика, в 1963 году, присутствовал космонавт № 2 Герман Степанович Титов.
Ежегодно устраивались университетские смотры художественной самодеятельности. Особым успехом пользовалась постановка оперы «Архимед», автором которой были Валера Канер и Валера Миляев. К нашим услугам были стадионы и спортивные площадки университета. В общем, в свободное время нам, студентам и аспирантам МГУ, скучать не приходилось.
Сразу после зачисления меня младшим научным сотрудником я окунулся в замечательную творческую атмосферу ГАИШ – этого крупнейшего в нашей стране научно-образовательного центра. ГАИШ – старейшее астрономическое учреждение в стране (основан в 1931 году на базе Астрономической обсерватории Московского университета, созданной в 1831 году). Это научно-исследовательский институт в составе МГУ. Поэтому в ГАИШ, наряду с научной работой, ведется подготовка астрономических кадров. ГАИШ является базой для проведения учебного процесса на физическом факультете МГУ, где имеется Астрономическое отделение, состоящее из нескольких кафедр: астрофизики, звездной астрономии, астрометрии, небесной механики, гравиметрии, экспериментальной астрономии. Поскольку ГАИШ является не только научным, но и учебным институтом, в его научных отделах и лабораториях представлены практически все направления астрономических исследований. Поэтому работать в ГАИШ очень интересно. Здесь царит классическая творческая университетская атмосфера научного братства, атмосфера нетерпимости к любым проявлениям карьеризма и зазнайства. Работать здесь непросто, потому что планка научных исследований в ГАИШ очень высока. Она десятилетиями задавалась такими выдающимися и всемирно признанными учеными, как академик Я. Б. Зельдович, член-корреспондент АН СССР И. С. Шкловский, профессор С. Б. Пикельнер, профессор Г. Н. Дубошин, профессор М. У. Сагитов, член-корреспондент АН СССР П. П. Паренаго, профессор Б. В. Кукаркин, профессор Б. А. Воронцов-Вельяминов, профессор Д. Я. Мартынов, и многими другими крупнейшими учеными страны.
Начало моей работы в ГАИШ совпало с периодом ренессанса в астрономии. Начиная с 1960‑х годов в течение почти двадцати лет в астрономии шла череда выдающихся открытий: были открыты квазары, пульсары, реликтовое трехградусное излучение, подтвердившее горячую модель формирования нашей Вселенной, источники мазерного излучения, связанные с областями звездообразования, компактные рентгеновские источники и т. п. Научная жизнь в ГАИШ была очень активной. Особенно следует отметить работу Объединенного астрофизического семинара (ОАС), организаторами и руководителями которого были три великих ученых: академик Я. Б. Зельдович, академик В. Л. Гинзбург, член-корреспондент АН СССР И. С. Шкловский. Впоследствии бессменным руководителем ОАС стал Я. Б. Зельдович. Длительное время, с момента начала работы семинара (28 апреля 1966 года) и до 15 ноября 1979 года (235‑е заседание семинара), обязанности ученого секретаря ОАС исполнял Б. В. Комберг. Затем обязанности ученого секретаря этого семинара исполнял Н. И. Шакура. Семинар заседал раз в две недели по четвергам с десяти утра. Он стал центром научной мысли всей Москвы. Конференц-зал ГАИШ в дни работы семинара был всегда переполнен. На этом семинаре докладывали свои работы всемирно известные зарубежные ученые: Фред Хойл, Чандрасекар, Хоукинг, Торн, Пачинский, Мартин Шмидт и др., а также практически все ведущие физики и астрофизики страны. В те годы особенно поразительными были успехи в области космических исследований. 12 апреля 1961 года мы, студенты МГУ, узнав о запуске на орбиту вокруг Земли советского космонавта Ю. А. Гагарина, побросали занятия и пешком прошли путь от здания МГУ на Ленинских горах до Красной площади, где состоялся стихийный митинг. Мы с гордостью за нашу Родину читали в прессе и слушали по радио и телевидению сообщения об успехах советской космонавтики, а в конце 1960‑х годов слушали по радио голоса американских космонавтов, высадившихся на поверхности Луны. Мы, студенты Астрономического отделения физического факультета МГУ, особенно гордились достижениями нашей страны в области космических исследований, поскольку осознавали свою косвенную причастность к этим исследованиям. Даже девушки-студентки физического факультета, которые раньше предпочитали общаться прежде всего со студентами физиками-ядерщиками или физиками-теоретиками, после начала космической эры в стране стали гораздо более внимательны к нам, студентам-астрономам. Вспоминаю, как еще до полета Юрия Гагарина одна моя знакомая студентка-красавица, во время свидания со мной, вдруг заявила: «Вчера в лаборатории радиопрактикума я спаяла блокинг-генератор. А что ты умеешь делать?» В ответ я начал рассказывать ей о бесконечности Вселенной, о звездах, но это ее мало удовлетворяло. Она требовала, чтобы я ей поведал о том, какое значение для народного хозяйства имеют мои занятия астрономией. После полета Юрия Гагарина отношение девушек-студенток физфака к нам, астрономам, радикально изменилось, и мы стали пользоваться гораздо большим уважением с их стороны.
Космические исследования превратили астрономию во всеволновую науку. Если ранее астрономы наблюдали небо с поверхности Земли лишь в узком окне оптического диапазона длин волн, на котором длина волны электромагнитного излучения меняется всего примерно в два раза (земная атмосфера непрозрачна для большинства электромагнитных излучений, идущих из космоса), то благодаря космическим исследованиям и выносу телескопов за пределы земной атмосферы появилась возможность наблюдать небо в гамма, рентгеновском, ультрафиолетовом, инфракрасном и длинноволновом радиодиапазонах. В данном случае длина волны принимаемого электромагнитного излучения меняется уже не в два раза, а в 1016 раз! Поэтому надежность астрономических результатов сравнялась с надежностью результатов лабораторных физических экспериментов. И это несмотря на то, что астрономические объекты удалены от нас на громадные расстояния в тысячи, миллионы и миллиарды световых лет. В ГАИШ всеволновая астрономия развивалась в отделе радиоастрономии под руководством И. С. Шкловского. Здесь были представлены: инфракрасная астрономия (В. И. Мороз), ультрафиолетовая и рентгеновская астрономия (В. Г. Курт, Е. К. Шеффер), радиоастрономия (Н. С. Кардашев, В. И. Слыш, Г. М. Шоломицкий), оптическая астрономия (П. В. Щеглов, В. Ф. Есипов, Т. А. Лозинская).
За работы по созданию «искусственной кометы», позволяющие определять расстояния до космических аппаратов, удаленных от Земли на сотни тысяч километров, профессор И. С. Шкловский был удостоен Ленинской премии. На кафедре астрофизики профессор С. Б. Пикельнер развивал новые идеи магнитной гидродинамики и выполнял свои замечательные и ныне всемирно признанные работы по физике межзвездной среды, звездообразованию, структуре Галактики, а также по теории активных областей на Солнце. В отделе исследований Луны и планет под руководством Ю. Н. Липского создавались полная карта и полный глобус Луны на основе снимков обратной стороны Луны, полученных советской межпланетной станцией. В отделе гравиметрии под руководством М. У. Сагитова разрабатывался лунный гравиметр для установки на советском луноходе, а также велись прецизионные измерения постоянной тяготения. Б. А. Воронцов-Вельяминов работал над созданием Каталога взаимодействующих галактик, Б. В. Кукаркин и П. Н. Холопов с сотрудниками ГАИШ и Астросовета АН СССР вели работу по систематизации переменных звезд, Д. Я. Мартынов со своими учениками занимался физикой тесных двойных звезд и абсолютной спектрофотометрией звезд. Г. Ф. Ситник построил модель абсолютно черного тела и прокалибровал спектр Солнца.
Наши небесные механики (Г. Н. Дубошин, Е. П. Аксенов, В. Г. Демин, Е. А. Гребеников) разрабатывали новые методы расчета траекторий искусственных спутников Земли (позднее они за эти работы были удостоены Государственной премии СССР). Астрометристы (К. А. Куликов, В. В. Подобед, В. В. Нестеров) занимались проблемами фундаментальной астрометрии и проблемой астрономических постоянных. Многие сотрудники ГАИШ, профессора и преподаватели Астрономического отделения физфака МГУ занимались написанием учебников и монографий по различным разделам астрономии. Свыше половины всех учебников по астрономии в нашей стране написано сотрудниками ГАИШ и Астрономического отделения МГУ. Достаточно вспомнить знаменитый школьный учебник по астрономии, написанный профессором Б. А. Воронцовым-Вельяминовым. А книга И. С. Шкловского «Вселенная, жизнь, разум» получила всемирную известность. Именно в ГАИШ, в отделе радиоастрономии, ученые начали всерьез обсуждать проблемы существования и поиска внеземных цивилизаций.
В такой активной, творческой атмосфере работать плохо просто неприлично. И я, молодой кандидат наук, старался быть достойным своих коллег по институту. В первые годы моей работы в ГАИШ я, естественно, старался продолжать и развивать тематику исследований, начатую в моей кандидатской диссертации. Старался усовершенствовать мою методику узкополосных фотометрических наблюдений и развивать алгоритмы решения некорректных задач в астрофизике. Очень полезным было сотрудничество с кафедрой оптики, а также с кафедрой математики физического факультета МГУ. Здесь проявилась уникальная особенность университетской науки – возможность работать на стыке разных научных направлений.
По просьбе заведующего кафедрой оптики профессора Федора Андреевича Королева я сделал доклад на заседании этой кафедры о достижениях в астрофизике и о возможностях применения узкополосных интерференционных клиновидных светофильтров в астрономии. На эту тему мы совместно с В. Ф. Есиповым и сотрудниками кафедры оптики написали статью в «Астрономический журнал». В итоге я получил от кафедры оптики несколько новых интерференционных фильтров – обычных и клиновидных. Особенно ценным для меня оказался интерференционный клиновидный фильтр, охватывающий красный диапазон спектра, в котором расположена наиболее важная для астрономов линия водорода Hα с длиной волны λ = 6563 Å. Мой первый клиновидный интерференционный фильтр, который я использовал для работ по кандидатской диссертации, охватывал синий диапазон спектра, и я его использовал для наблюдений в линиях гелия HeII 4686 Å и углерода CIII-IV 4653 Å.
Я приспособил этот «красный клин», как я его называю, к электрофотометру и на 48-сантиметровом рефлекторе АЗТ‑14 Крымской станции ГАИШ продолжил узкополосные наблюдения затменных двойных звезд с компонентами Вольфа–Райе в красной части континуума и в эмиссионных линиях. В этой связи вспоминаю такой забавный случай. Чтобы автоматизировать процесс перемещения клиновидного интерференционного фильтра поперек луча зрения (с целью регулировки рабочей длины волны), я заказал в отделе снабжения ГАИШ (тогда снабжение ученых приборами было плановым) специальный миниатюрный электродвигатель. В то время мое рабочее место было на втором этаже ГАИШ в комнате № 73. Кроме меня там размещались мои старшие товарищи, всеми глубокоуважаемые научные сотрудники Ира Глушнева, Ростик Ирошников, Аня Делоне, позднее к нам присоединилась Ира Волошина. И вот мы сидим на своих рабочих местах. Вдруг открывается дверь, и работница отдела снабжения ГАИШ спрашивает: «Ну, кто тут из вас Черепащук? Идите разгружайте свой электродвигатель». Я, слегка удивленный, спускаюсь на первый этаж и вижу, что у входа в здание ГАИШ стоит грузовик и несколько сотрудников ГАИШ сгружают с него тяжелые крупногабаритные приборы.
Среди них оказался и заказанный мной электродвигатель, только не миниатюрный, а большой и тяжелый, мощностью в несколько киловатт. Оказалось, что, оформляя заказ, я слегка перепутал код классификации электродвигателя и в итоге оконфузился. Этот тяжелый электродвигатель потом долго стоял в прихожей ГАИШ, и лишь спустя пару месяцев работники отдела снабжения отправили его назад, на городской склад. К этому времени у Д. Я. Мартынова появился новый аспирант, окончивший Казанский университет: Хабибрахман Файзрахманович Халиуллин, или, как мы его кратко, по-дружески называли, Рахман. Он оказался превосходным наблюдателем, и Д. Я. Мартынов поручил мне быть его «микрошефом». Я предложил Рахману поучаствовать в моей программе узкополосных наблюдений затменных звезд Вольфа–Райе. Он согласился и выполнил высококачественные наблюдения ряда звезд. В итоге нам удалось построить надежные узкополосные фотоэлектрические кривые блеска затменной системы V444 Cyg в разных областях спектра – от синей до красной. Интерпретация этих кривых блеска, выполненная по моей методике, позволила не только дать надежное определение радиуса «ядра» звезды Вольфа–Райе, но и оценить цветовую и яркостную температуру «ядра», а также протяженной атмосферы звезды Вольфа–Райе. Оказалось, что «ядро» звезды Вольфа–Райе горячее с температурой более 70 000 К, а излучение протяженной атмосферы – сравнительно холодное, соответствует ~ 20 000 К. Поскольку вклад излучения протяженной атмосферы преобладает (это рекомбинационное излучение, возбуждаемое ультрафиолетовыми квантами горячего «ядра»), средняя температура суммарного излучения всего диска звезды Вольфа–Райе получается низкой ~ 25 000 К. Это и объясняет главную особенность спектров звезд Вольфа–Райе: наличие линий излучения, соответствующих высоким температурам, при сравнительно низкотемпературном континууме.
Сравнительно малый радиус «ядра» звезды Вольфа–Райе и его высокая температура свидетельствуют о том, что звезда Вольфа–Райе имеет избыток гелия, что согласуется и со спектроскопическими определениями химического состава ее атмосферы. Таким образом, анализ кривых блеска системы V444 Cyg в синем и красном континууме, выполненный моим методом, позволил отделить излучение горячего «ядра» звезды Вольфа–Райе от излучения ее холодной, рекомбинационно светящейся оболочки. На этом основании был сделан вывод о том, что звезды Вольфа–Райе – это гелиевые остатки первоначально массивных звезд, которые потеряли свои водородные оболочки, либо вследствие обмена масс в тесных двойных системах, либо под действием давления радиации (в случае звезд с массами более сорока солнечных). Этот вывод сейчас является общепризнанным. Эти принципиально важные результаты заинтересовали наших американских коллег, и в 1984 году в Astrophysical Journal вышла наша совместная статья с Рахманом и с Джойлом Итоном из США, в которой мы проанализировали моим методом кривые блеска системы V444 Cyg в очень широком диапазоне спектра – от 3,5 микрона (инфракрасный диапазон) до 2400 Å (ультрафиолетовый диапазон, наблюдения с борта американской орбитальной обсерватории ОАО-2). Новые результаты полностью подтвердили вывод о том, что звезда Вольфа–Райе в системе V444 Cyg является гелиевым остатком, образовавшимся в результате потери водородной оболочки первоначально массивной звездой. Эта работа получила широкую известность, на нее имеется много ссылок в научной литературе. Рахман успешно защитил кандидатскую диссертацию в 1975 году. Он сделал интересную работу. В частности, он открыл изменение орбитального периода системы V444 Cyg, вызванное радиальной потерей массы звездой Вольфа–Райе в виде звездного ветра. Это позволило ему дать наиболее надежную оценку темпа потери массы звездой Вольфа–Райе: 10-5 солнечных масс в год.
Эта работа Рахмана получила мировую известность и широко цитируется. В дальнейшем наши творческие пути с Рахманом разошлись. Он стал заниматься изучением вращения линии апсид в затменных двойных системах с эллиптическими орбитами. Здесь им получен ряд важных результатов по оценке степени концентрации вещества в недрах звезд. Широкую известность получила работа Мартынова и Халиуллина по анализу вращения линии апсид в затменной системе DI Her, где авторами было найдено, что релятивистский член в апсидальном движении аномально мал. Изучение вращения линии апсид в затменных двойных системах – любимая тема Д. Я. Мартынова, и он увлек этой проблемой Рахмана. Я же продолжал заниматься тесными двойными звездными системами, содержащими пекулярные компоненты.
Мои коллеги по некорректным задачам А. В. Гончарский и А. Г. Ягола успешно окончили кафедру математики физического факультета МГУ и поступили в аспирантуру. Мы втроем продолжали заниматься поисками оптимальных методов решения обратных задач астрофизики. При решении обратных некорректных задач необходимо как можно больше использовать специфику задачи, то есть накладывать как можно больше априорных ограничений на искомое решение, следующих из физического смысла задачи. Еще в 1943 году А. Н. Тихонов доказал теорему о решении обратной задачи на компакте. Если априорных физических ограничений на искомое решение достаточно, чтобы выделить так называемое компактное множество функций, то обратная задача является корректной (точнее говоря, условно корректной, поскольку она решается на ограниченном множестве функций). В этом случае решение обратной задачи является устойчивым и любой алгоритм решения такой задачи является регуляризирующим по Тихонову. В данном случае можно также оценить ошибку решения. В отличие от произвольного множества компактное множество обладает некоторыми свойствами упорядоченности. Строгое определение понятия компактного множества формулируется так: это такое множество, в котором из каждой последовательности элементов этого множества можно выделить сходящуюся подпоследовательность. Например, множество функций, зависящих от конечного числа параметров, является компактным (а если компактному множеству принадлежат и границы этого множества, то это компакт).
Именно этим и объясняются большие успехи в решении обратных параметрических задач. Например, в случае звезд с тонкими атмосферами из физической теории тонких атмосфер получается аналитическое выражение для распределения яркости по диску звезды, зависящее от трех параметров: яркости в центре, радиуса звезды и так называемого коэффициента потемнения к краю x. Когда x = 0, диск звезды однородный, когда x = 1, яркость диска на краю равна нулю (полное потемнение к краю). Как я уже писал ранее, с использованием такого параметрического представления обратная задача интерпретации кривой блеска затменной системы сводится к нелинейной системе алгебраических уравнений, зависящей от небольшого числа искомых параметров. Эту систему можно решать любым методом, и получаемый набор искомых параметров будет устойчив по отношению к ошибкам наблюдений.
В случае затменных систем звезд с протяженными атмосферами, как уже отмечалось, не существует универсального параметрического представления для функции распределения яркости по диску звезды. Поэтому необходимо решать интегральное уравнение Фредгольма 1‑го рода для нахождения этой функции. Вначале мы с А. В. Гончарским и А. Г. Яголой решали это уравнение методом регуляризации Тихонова, который не требует выделения компакта и позволяет получить устойчивое приближение к точному решению при минимальной априорной информации о гладкости искомого решения (в этом состоит изумительная красота идеи тихоновского регуляризирующего алгоритма). В дальнейшем мы старались учесть специфику нашей обратной задачи и выделить компакт. После многомесячных изысканий я предложил использовать в качестве априорной информации в нашей модели информацию о монотонности и неотрицательности искомой функции распределения яркости по диску звезды с протяженной атмосферой.
Эта информация вытекает из общих соображений о структуре протяженной звездной атмосферы и не затрагивает деталей физической модели атмосферы. Поэтому она является универсальной для затменных систем. Какова же была моя радость, когда спустя пару недель мои коллеги и друзья, Саша Гончарский и Толя Ягола, объявили, что им удалось доказать теорему о том, что множество монотонных и неотрицательных функций является компактным! Высокий уровень математической подготовки моих друзей позволил им без труда написать алгоритм и программу для компьютера, реализующую решение нашей обратной задачи на компактном множестве монотонных (невозрастающих) неотрицательных функций. К счастью, возможности тогдашних компьютеров (ЭВМ БЭСМ-4 и БЭСМ-6) оказались достаточными для того, чтобы за несколько минут получить решение нашей задачи. Это и позволило нам получить полное решение обратной задачи: найти искомые функции, а также искомые параметры нашей модели. Конечный результат оказался очень красивым: мы свели нашу некорректную обратную задачу к условно корректной, в которой можно получить устойчивое решение и его погрешность. Соответствующая компьютерная программа решения нашей обратной задачи на множестве монотонных неотрицательных функций была опубликована на языке фортран в бюллетене «Переменные звезды». Эта программа в дальнейшем использовалась многими авторами, как в нашей стране, так и за рубежом, для решения обратных задач, связанных не только с анализом кривых блеска затменных систем, но и для решения других задач науки и техники.