bannerbannerbanner
полная версияИскусственные внешние ресурсы для освоения космоса

Алексей Леонидович Полюх
Искусственные внешние ресурсы для освоения космоса

Полная версия

1.5 Юридические

аспекты использования кинетических двигателей

В принципе, западная законотворческая традиция позволяет запретить всё, что угодно – если есть оплаченный заказ. Но до тех пор, пока вещь не существует и параметры её не известны, её, стало быть, и запретить нельзя; юристы в такой ситуации напоминают бабушку, которая не может перебежать дорогу перед машиной, пока она стоит, потому что нельзя рассчитать вектор скорости…

Газовая модификация упруго-кинетического двигателя при удельном импульсе до 40 км/с производит только нейтральный водород, которого в Солнечной системе много, и запретить его применение сложно. Тем не менее, надо иметь в виду возможность такой попытки, и вести разработку сразу нескольких вариантов, не афишируя их точные параметры до окончания разработки, чтобы потом можно было быстро перейти на резервный вариант, в случае запрета на использование какого-нибудь второстепенного элемента применяемого технического решения.

Например, опасными могут оказаться лазеры корректировочных станций ("они могут ослепить стаю диких гусей в ясную ночь"); эманации сублимируемого вещества (ионы лития нарушат радиосвязь); риск потери снаряда и его попадания не туда (даже если снаряд в случае промаха покинет Солнечную систему); свечение в вечернем небе яркой "звезды" работающего двигателя межпланетного корабля может напугать маленьких детей, или сбить с курса мигрирующих цикад; религиозные принципы какой-то общины могут прямо запрещать использование водорода; и на каждый параметр технического решения, когда они уже будут известны, можно найти повод для запрета. Поэтому техническое решение в целом должно быть гибким, и допускать замену одного или нескольких параметров без критического ухудшения результата.

Вместо оптических лазеров – можно применить инфракрасные, поток электронов или газа, облако микро пылинок, сеть из нанонитей, или силовые поля. Вместо металлической оболочки снарядов – лёд, полиэтилен или графит; водород можно заменить водой… каждое такое изменение может ухудшить конечный результат, но необходимость в этом может возникнуть.

Конечно, если ракету будет запускать НАСА, то всё будет иначе. Сейчас 30 кг плутония-246 в одном космическом аппарате не считают опасным количеством. Грязный ядерный двигатель, использующий уран в составе реактивной струи, тоже вполне могут разрешить. Предела нет.

К счастью, наш двигатель прямо не попадает под запрет на "любые взрывы в космосе", поскольку там нет столкновения плотных тел и их взрыва – снаряд сначала испаряется, и только потом струи газа взаимодействуют между собой и с соплом, так что максимальное давление может быть менее 1 атмосферы. При необходимости режим работы двигателя можно сделать постоянным, а не прерывистым, с постоянным давлением в сопле.

Испарение снаряда тоже можно осуществлять без взрыва, например, распыляя рабочее тело в виде порошка, и затем постепенно испаряя микро частицы в струе встречного газа, вообще без каких-либо намёков на взрыв (ведь, например, спички не "взрываются", иначе мы все давно погибли бы, правда). Температуру газа можно снизить до 3-4 тысяч градусов.

При температуре ниже 10.000 К ионизирующих излучений не будет, а интенсивность оптического и инфракрасного излучения можно уменьшить.

В общем, надо иметь в запасе десяток альтернативных вариантов, с максимально далёким разбросом всех параметров технического решения, на случай попытки юридического саботажа разработки и использования.

1.6 Кассетная

доставка снарядов

До сих пор мы рассматривали способы корректировки полёта одиночного снаряда, и нашли что это не слишком сложно. Но, для очень, очень больших расстояний – хотя бы вот, от Юпитера до Земли или Солнца, а тем более для доставки топлива за орбиту Плутона и дальше – понадобится всё же много корректировочных станций, и это не очень удобно.

Если снаряды разгонять по одному, один за другим – например, с помощью пушки, или цепочки лазерных или магнитных разгонных устройств – то тут, пожалуй, сложно поступить как-то иначе. Хотя, при большом желании, даже и в этом случае, всё же можно потом собрать вместе некоторое количество микро снарядов, первоначально выпущенных поодиночке, упаковать их в кассету, имеющую собственные автономные средства навигации и маневрирования, и затем, на большей части пути, управлять полётом только этого одного объекта, что проще и почти не требует вспомогательного оборудования в промежуточных точках.

Но возможны также ситуации, и в этой части мы будем рассматривать в основном их, когда снаряды разгоняются без пушки, как то иначе, и сразу большой кассетой, так что их удобно большую часть пути везти вместе, и только в конце распределить по одному на некотором отрезке траектории, чтобы они взаимодействовали с целью в нужной последовательности. Например, такая ситуация будет, если для разгона снарядов используется ракета, или если контейнер со снарядами просто сбросить вниз с большой высоты в гравитационном поле массивного тела. Возможна и такая конструкция пушки или катапульты, особенно для очень больших скоростей при межзвёздных перелётах, когда будет удобнее разгонять снаряды не по одному, а кассетой определённой массы, порядка нескольких килограммов.

В таком случае на большей части траектории надо будет управлять полётом небольших автономных аппаратов, которые имеют собственные средства маневрирования, и роль стационарных навигационных станций сведётся к передаче сигналов управления. При этом точность траектории полёта в промежуточных пунктах может быть снижена на 6-10 порядков, до тысяч километров, так как точная фокусировка роя понадобится только в непосредственной близости от цели-потребителя.

Финальная корректировка траекторий снарядов может осуществляться как автономно, так и с помощью подвижных или стационарных станций. В частности, сам контейнер со снарядами может иметь активные средства для их последующего распределения по траектории, например газовую или магнитную пушку с небольшой относительной скоростью вылета снарядов, и средства для измерения и корректировки их скорости.

Например, от контейнера (ракеты) со снарядами задолго перед их выпуском могут отделиться несколько лазерных корректировочных станций (колец) описанного ранее типа, имеющих собственные двигатели, позволяющие им со скоростью несколько км/с удалиться вперёд вдоль траектории на сотни-тысячи километров, сохраняя точное взаимное расположение и связь со стационарными навигационными станциями.

Вариантов реализации деталей такой системы может быть много, и мы не будем здесь в них углубляться. Для межпланетной доставки топлива и энергии такой вариант может быть предпочтительнее стрельбы одиночными снарядами, так как можно снизить точность траектории в промежуточных точках и сильно сократить число корректировочных станций, что упрощает управление системой и снижает риск промахов.

Для доставки на очень большие расстояния, и тем более снабжения топливом и энергией межзвёздных кораблей, контейнерный вариант доставки остаётся единственным, так как одиночные снаряды не только намного сложнее контролировать во время полёта, но и труднее защитить от неблагоприятных воздействий внешней среды.

Мы дальше не будем уточнять, одиночные снаряды используются для доставки топлива, в кассетах, контейнерах или по какой-то более сложной схеме, полагая, что оптимальный вариант будет определяться расстоянием, имеющимися техническими возможностями и целью. Конечный результат во всех случаях зависит в основном от скорости и энергии.

1.7 Другие

типы термо-кинетических двигателей

В III главе мы рассмотрели 2 типа новых ракетных двигателей:

Упруго-кинетический – уже предлагался до нас в твердотельном варианте ("разгонять ракету металлическими шариками"); мы предложили газовый упруго-кинетический двигатель, который позволит разгонять ракету более эффективно, при удельном импульсе от 10 км/с до сотен и тысяч.

Крайне полезной особенностью упруго-кинетических двигателей является то, что расход бортового запаса топлива равен 0. Но есть принципиальное ограничение: чтобы разгонять ракету, снаряд её должен догонять, со скоростью хотя бы на 2-3% большей.

Мы также предложили модификацию двигателя, которая обходит это ограничение (я полагаю, что этот тип двигателя предложен впервые нами и является полностью оригинальным изобретением). Мы показали, что при скорости снаряда, много меньшей, чем скорость ракеты, или даже при неподвижных "снарядах" (в роли которых могут использоваться капсулы с топливом, естественные внешние тела или газ), можно, тем не менее, разгонять ракету, но, правда, уже с дополнительной затратой топлива из бортового запаса. При этом удельный импульс (в расчёте на массу топлива затрачиваемого ракетой) равен 30-35% от текущей разности скоростей.

Мы назвали этот последний тип двигателя "термо-кинетическим", в отличие от "упруго-кинетического", поскольку дополнительный импульс получается в результате совершения работы горячего газа или плазмы, нагреваемого за счёт уменьшения запаса кинетической энергии при столкновении двух тел (обычно газообразных).

Но, кроме рассмотренного основного варианта, данный тип двигателя (использующий нагрев газа за счёт кинетической энергии) может иметь несколько других модификаций, которые будут отличаться главным образом способом подачи рабочего тела в точку взаимодействия, а также деталями взаимодействия между газом (плазмой) и агентом (магнитным полем), используемым для передачи силового взаимодействия.

В основном варианте термо-кинетического двигателя ракета несёт на борту половину всего запаса топлива в виде мишеней, с которыми сталкиваются внешние тела – снаряды. (В частности, для уменьшения давления плазмы и радиационного нагрева двигателя, оба тела ещё за некоторое время перед столкновением могут превращаться в газ).

 

Но возможны и такие модификации, когда оба сталкивающихся тела прилетают в точку встречи с ракетой извне, с разными скоростями, отличными от скорости самой ракеты, и направленными либо вдоль траектории ракеты, либо под большими углами к ней. В действительности, предыстория прилёта сталкивающихся тел в точку рандеву не важна. На конечный результат (импульс, переданный ракете) влияют только начальная скорость центра масс получившегося газа относительно ракеты в начальный момент после столкновения, и конечная скорость того же центра масс газа, что в свою очередь зависит также от начальной и конечной температуры, то есть от затраченной кинетической энергии.

Такие варианты, с внешней подачей как снарядов, так и мишеней (или протяжённой мишенью в виде цепочки зарядов), будут работоспособны в ограниченном диапазоне скоростей. В отличие от основного варианта термо-кинетического двигателя, удельный импульс которого растёт с ростом скорости ракеты, здесь он будет, наоборот, уменьшаться, по мере того, как скорость ракеты становится намного больше скорости центра масс газа и скорости его расширения. Но, ракета не тратит собственное топливо.

Это, по существу, промежуточный вариант между чисто "упругим" газо-кинетическим двигателем, (для которого всё топливо находится вне ракеты, но скорость снаряда должна быть больше скорости ракеты), и основным вариантом термо-кинетического двигателя, (при котором ракета несёт половину всего топлива, но зато скорость не ограничена). Для новой модификации, есть возможность разогнать ракету немного быстрее снаряда (в 2-3 раза), всё ещё без затрат топлива самой ракеты, но удельный импульс с ростом скорости будет постепенно уменьшаться (хотя КПД может быть постоянным и достаточно высоким, на уровне 70% и более).

Вообще-то, мы уже рассматривали очень схожий по свойствам двигатель давным-давно, ещё в I части данного трактата, когда изучали возможность безракетного запуска грузов на околоземную орбиту. Там тоже было тело (топливный шнур), движущееся независимо от ракеты, и превращающееся в газ, только источником энергии для этого были химические реакции. Но принцип действия газа после его образования тот же. В рассматриваемом теперь случае будет больше относительная скорость и удельная энергия газа, но формулы преобразования энергии будут похожи.

Таким образом, мы теперь имеем 3 базовых типа двигателя на внешних ресурсах:

1) Пушечный ("упругий") газо-кинетический двигатель: всё топливо вне ракеты, подаётся из пушки ей вслед, предельная скорость ракеты на 3% меньше начальной скорости снаряда. Удельный импульс лучший из всех вариантов (ракета вообще не тратит топливо), КПД на уровне десятков процентов. При лазерном разгоне снарядов, можно достичь скорости 0,5 с…

Пока есть возможность, надо использовать этот тип. Но он имеет ограничения: нужна пушка, и его сложно применять в атмосфере.

2) "Неупругий" термо-кинетический двигатель с внутренним запасом топлива: половину топлива несёт ракета, снаряды летят ей навстречу, и чем быстрее летит ракета, тем лучше он работает. Удельный импульс 30% от суммы (ну то есть разности) скоростей ракеты и снаряда. Есть минус – ракета тратит топливо. И есть плюс – внешнее топливо может быть вообще неподвижно, удельный импульс зависит только от разности скоростей.

В принципе, позволяет обойтись вообще без пушки, если есть возможность придать ракете начальную скорость как-то иначе. Но максимальная скорость ограничена тем, что ракета всё-таки теряет массу.

3) И "внешне-внешний" термо-кинетический двигатель, химическая модификация которого (с внешним топливным шнуром) была рассмотрена ещё в конце I части, а кинетическая сейчас.

Всё топливо находится вне ракеты, как в первом варианте.

Топливо нагревается за счёт кинетической энергии при столкновении, как во втором (возможны варианты, когда нагревается за счёт химической или ядерной энергии, лазерного излучения, электрического тока).

Максимальная скорость ракеты в принципе не ограничена, но реально будет ограничена падением эффективности преобразования энергии при росте отношения скорости ракеты к скорости расширения газа.

Если максимальная теоретически возможная радиальная скорость (V1) свободного расширения газа в пустоту (при отсутствии сопла двигателя) фиксирована, (и равна половине разности скоростей сталкивающихся тел), то максимальная разность скоростей ракеты и центра масс газа (V2-V0) будет определяться физическими и геометрическими свойствами сопла двигателя и эффективностью преобразования внутренней энергии газа в работу.

Для нейтрального газа при небольшой температуре, и металлического сопла (или пакета кольцевых металлических лопаток, как мы когда-то рассматривали для химической модификации в I части), предел отношения (V2-V0)/(V1) будет, по-видимому, примерно равен 2,5…3, и главным образом будет определяться не столько геометрией самого сопла или лопаток, сколько температурой газа, хотя при импульсном действии допустимая температура может составлять десятки тысяч градусов.

Для плазменного магнитного сопла, при очень большом коэффициенте расширения газа и низких потерях, это отношение, вообще, может быть довольно большим, возможно на уровне 5-10, что в принципе позволяет даже при не очень горячей плазме достичь большой скорости. По существу, это будет распределённая в пространстве цепочка взрывных разгонных устройств с плазменной накачкой энергии от внешнего источника, взаимодействующих с магнитным полем разгоняемого аппарата.

1.8 Сифонный

(U-образный) газовый упруго-кинетический двигатель

Для упруго-кинетического двигателя (т.е. когда снаряды догоняют ракету и передают ей импульс, превращаясь в газ) мы в III части рассмотрели простейший вариант сопла – просто входной патрубок, он же выходной, с определённым профилем сечения. Позже мы предложили "парашютный" вариант сопла – очень большой купол из тонкой плёнки, улавливающий и отражающий струю разреженного газа, при этом диаметр струи газа, и точность попадания в сопло, может быть порядка сотен метров.

Но вариантов взаимодействия сопла с газом ещё очень много.

Например, если потребуется, можно сделать режим работы двигателя постоянным, без пульсаций давления газа, и с довольно умеренной температурой, на порядок меньшей, чем при полном торможении газа.

В исходном варианте вся кинетическая энергия газа вначале переходит в тепловую, и затем за счёт этой внутренней энергии газ расширяется назад. Это, в принципе, эффективно с точки зрения энергии, но есть недостатки.

Во-первых, при сильном нагреве газа в некоторых диапазонах температур значительная доля энергии затрачивается на атомизацию и ионизацию, что снижает работоспособность газа и КПД.

Кроме того, при ударном торможении газа о преграду резко повышается не только температура газа, но и давление, что тоже нехорошо.

Одним из вариантов решения этих проблем является неполное торможение газа, то есть прохождение его с довольно большой скоростью по некоему криволинейному проходному тракту переменного сечения, при одновременном изменении вектора скорости, давления и температуры.

В частности, это может быть U-образно изогнутая труба, постоянного или переменного сечения (с расширением на концах и сужением в зоне изгиба), оба открытых конца которой направлены назад. Струя газа входит в трубку через один раструб, сжимается в несколько раз, но не до полного торможения, так что только 5-10% кинетической энергии переходит в тепло.

Скорость газа почти не уменьшается по величине, но вектор скорости разворачивается на 180о, и струя газа выходит назад через второй расширяющийся конец трубы, сохраняя более 95% начальной скорости.

Если сравнить этот вариант с первоначальным, то есть полным переходом энергии газа в тепловую, и (частично) обратно в механическую, то КПД отличается очень сильно. В данном случае будет осуществляться почти идеально упругая передача максимального возможного импульса, в то время как при полном сжатии газа до остановки, его скорость затем восстанавливалась только на 50-70%, и передавался импульс около 75-85% (от максимально возможного при упругом отражении).

Для такого двигателя тоже возможна модификация с трубой большого диаметра из тонкой плёнки и приёмным раструбом диаметром 100 метров.

При скорости водорода относительно трубы в десятки км/с его температура может быть всего несколько тысяч градусов, а при скоростях в сотни км/с и температуре более 20.000 К можно использовать аналогичную конфигурацию магнитного поля.

В общем, очень хороший вариант.

Возможны и более сложные модификации, с разветвлением трубы более чем на два конца, которые могут быть направлены под разными углами друг к другу и к направлению полёта ракеты, через которые входят газовые потоки с разными скоростями от разных внешних источников. Например, так можно раздельно подавать извне как рабочее тело, с относительно небольшой скоростью, так и более высокоэнергетический носитель кинетической энергии, либо газы и плазму разного химического состава. При этом обмен импульсом и энергией между массами и потоками газов может осуществляться по разному, как при прямом механическом и атомарном взаимодействии, так и через посредство магнитных полей и токов. Для плазменного магнитного сопла можно предложить сложные конфигурации полей, осуществляющие функции энергетической и силовой машины, перерабатывающей потоки вещества и энергии.

1.9 Атмосферный

термо-кинетический двигатель (тепловая прямоточка)

При некоторых специальных условиях возможны и другие варианты поставки топлива и его нагрева; например, часть топлива может находиться на борту ракеты или прилетать в виде снарядов с большой скоростью, а другая представлять собой водород из атмосферы планеты вроде Юпитера. Это будет аналог теплового воздушно-реактивного двигателя с нагревом газа за счёт кинетической энергии бортового запаса топлива.

Такой аппарат будет довольно сложным технически, так как придётся лететь в верхних слоях атмосферы при довольно большой скорости и внешней температуре порядка 20-30 тысяч градусов. С другой стороны, он проще, чем вариант с потоком вещества в виде снарядов, так как не надо вообще ничего никуда запускать, топливо находится на борту. Я считаю, что в данных условиях техническая сложность реализации обоих вариантов будет примерно равной, и надо сравнивать их эффективность.

При начальной параболической скорости полёта в верхних слоях атмосферы Юпитера 60 км/с, и с учётом собственной немаленькой скорости вращения планеты, встречная скорость потока водорода уже вначале будет около 70 км/с. Далее она будет возрастать, и удельный импульс соответственно будет возрастать тоже, оставаясь на уровне 30% разности скоростей аппарата и атмосферы планеты, так что удельный импульс (по затратам бортового запаса топлива) будет больше 20 км/с.

Чтобы увеличить свою скорость на 30 км/с, т.е. в 1,4 раза, ракете придётся уменьшить свою массу в 1,4^^3,3 = 3,2 раза (по "прогрессивной" формуле Циолковского, с УИ пропорциональным скорости).

Т.е. при начальной массе 16 тонн, и начальной параболической скорости (относительно центра планеты) 60 км/с, такой аппарат разгонится в атмосфере Юпитера от 60 до 90 км/с (относительно центра планеты), затратив 11 тонн топлива, и уменьшив свою массу с 16 до 5 тонн.

Выйдя после этого из гравитационного поля планеты на бесконечность, ракета будет иметь скорость 67 км/с.

Сравним этот результат с базовым вариантом термо-кинетического двигателя в вакууме, при котором 5,5 тонн топлива находятся на борту ракеты (имеющей собственную массу 5 тонн), а 5,5 тонн летят ей навстречу, имея вблизи границы атмосферы скорость 60 км/с.

В этом случае встречная скорость будет 120 км/с, и удельный импульс (в пересчёте на затрачиваемую массу бортового топлива) вдвое больше, чем в атмосферном варианте, т.е. около 40 км/с. Казалось бы, и конечная скорость ракеты должна быть больше…

Однако, общая масса снарядов (в данном случае, и всего топлива) по-прежнему 11 тонн, и их общая кинетическая энергия (в системе отсчёта планеты) такая же. Так что сильно больший результат мы не получим.

Теперь масса ракеты уменьшится с 10,5 до 5 тонн, т.е. в 2,1 раза. Извлечём корень 3,3 степени из 2,1 и получим, что скорость ракеты (в системе отсчёта встречного снаряда) увеличится в 1,25 раза, т.е. со 120 км/с до 150.

А скорость в системе отсчёта планеты увеличится с 60 км/с до 90. Вот. Как ни крути, а больше энергии, чем её есть, не извлечь…

То есть, результаты в обоих случаях в точности одинаковые, до процента, хотя, казалось бы, параметры сильно различаются.

Мы можем взять 16 тонн льда (на условно-бесконечном расстоянии от Юпитера), и получить на выходе 5 тонн, летящих в ту же бесконечность со скоростью почти 70 км/с. Причём, как выяснилось, детали взаимодействия вещества мало влияют на конечный результат, а в большей степени влияет начальный запас энергии, и коэффициент её преобразования в кинетическую энергию оставшейся части вещества.

 

То есть при равной начальной массе и кинетической энергии вещества, и равной эффективности механизмов преобразования энергии, мы получим примерно равный результат, хотя физические механизмы взаимодействия могут сильно отличаться.

Физический смысл всего этого манёвра заключается в том, что мы сбрасываем некоторую массу вещества в достаточно глубокую потенциальную яму, а часть высвобождающейся гравитационной энергии передаём другой массе вещества, в данном случае в виде кинетической энергии. В общем, обычная гидроэлектростанция, аналог водяной мельницы.

В данном случае мы сбросили 11 тонн льда из бесконечности в атмосферу Юпитера, с теоретическим гравитационным потенциалом 1,8 ГДж/кг; общие затраты энергии 20.000 ГДж; полезная кинетическая энергия вещества, опять улетевшего на бесконечность, 2,3 ГДж/кг, и всего энергии 11,5 ТДж. Стало быть, КПД нашей гравитационной мельницы 57%, что немного меньше, чем КПД гравитационных гидроэлектростанций на Земле.

Правда, мы здесь оптимистично забыли, что сможем извлечь и использовать только часть этой кинетической энергии.

Если бы целью данного манёвра было просто улететь из системы Юпитера, то мы могли бы использовать всю энергию ракеты. Но наша цель другая – мы хотим получить замкнутый энергетический цикл, перерабатывающий вещество спутников Юпитера, и позволяющий выводить часть вещества и энергии за пределы системы для других потребителей.

Поэтому КПД рабочего цикла окажется меньше примерно на треть.

Если "сухой" вес ракеты 1 тонна, и она берёт на борт 9,5 тонн льда, то на выходе его останется 4 тонны. Эти 4 тонны будут улетать от Юпитера со скоростью 70 км/с, и их можно частично использовать для возобновления цикла, а частично отправить на другие нужды.

Саму ракету надо затормозить, развернуть и снова заправить, и на всё это уйдёт от 10 до 50 % полученной энергии, в зависимости от того, где брать воду (точнее мы определим немного позже). Так что за пределы системы мы сможем отправить всего 2-3 тонны льда, и 40-70% полученной энергии.

Мы можем оценить мощность такой системы. При длительности цикла 12 суток, или миллион секунд, сухой массе ракеты 1000кг, и энергии на выходе 5.000 ГДж, средняя мощность электростанции составит 5 МВт, а удельная мощность 5 кВт/кг сухого веса ракеты, что и не мало, и не много.

Рейтинг@Mail.ru