Многие биологи полагают, что все разнообразие жизни на нашей планете происходит от единственного исходного вида – "универсального предка" по имени Лука (об этом прародителе всего живого на Земле мы уже упомянули в начале главы). Другие, в том числе крупнейший микробиолог академик Г.А. Заварзин, с этим не согласны. Они исходят из того, что устойчивое существование биосферы возможно только при условии относительной замкнутости биогеохимических циклов – в противном случае живые существа очень быстро израсходуют все ресурсы или отравят себя продуктами собственной жизнедеятельности.
Замкнутость циклов может быть обеспечена только сообществом из нескольких разных видов микроорганизмов, разделивших между собой биогеохимические функции. Одни, используя ресурсы среды, наполняют ее продуктами своей жизнедеятельности, а другие, используя эти продукты, возвращают в качестве своих отходов первоначальный ресурс во внешнюю среду. Примером такого сообщества являются циано-бактериальные маты, о которых пойдет речь в главе 3. Г.А. Заварзин считает, что организм, способный в одиночку замкнуть круговорот, так же невозможен, как и вечный двигатель.
Для этапа химической преджизни это еще более очевидно. Никакая отдельно взятая органическая молекула не сможет устойчиво самовоспроизводиться и поддерживать гомеостаз в окружающей среде. На это способны только комплексы из довольно большого числа разных молекул, между которыми наладилось "взаимовыгодное сотрудничество" (симбиоз).
Если принять этот ход рассуждений, то окажется, что, скорее всего, Лука был не единым видом микроорганизмов, а полиморфным сообществом, в котором происходил активный обмен наследственным материалом между организмами. Разнообразие, симбиоз, разделение функций и информационный обмен – изначальные свойства земной жизни.
Впрочем, следует помнить, что в биологии не бывает правил без исключений и даже видимая безупречность логических рассуждений не всегда может служить критерием истины. Теоретически все-таки можно себе представить единичный вид микроорганизмов, существующий на планете в течение очень долгого времени. Например, если "пищей" ему служат какие-либо вещества, поступающие понемножку из земных недр, а отходы жизнедеятельности либо перерабатываются в геохимических круговоротах без участия живых организмов, либо, к примеру, просто захораниваются в земной коре. Таким образом, этот гипотетический микроорганизм попросту встраивается в уже существующий геохимический цикл, лишь ускоряя его.
Однако в целом на сегодняшний день утверждение "в начале было сообщество" представляется, на мой взгляд, более вероятным, чем "в начале был один вид микробов".
В следующей главе мы подробнее поговорим о микробах, микробных сообществах и о самом долгом из всех этапов истории Земли, в течение которого микробы были господствующей формой жизни.
В. В. ВЛАСОВ, А. В. ВЛАСОВ. Жизнь начиналась с РНК // Наука из первых рук. № 2(3). 2004. С. 6–19. http://evolbiol.ru/vlasov.htm
Г. А. ЗАВАРЗИН. Становление системы биогеохимических циклов. // Палеонтологический журнал. № 6. 2003. С. 16–24. http://evolbiol. ru/zavarzin2003.htm
А. В. МАРКОВ. Обзор "Зарождение жизни. Прокариотная биосфера" 2003–2007. http://evolbiol.ru/paleobac.htm
A. Ю. РОЗАНОВ. Цианобактерии и, возможно, низшие грибы в метеоритах. 1996. http://www.pereplet.ru/obrazovanie/stsoros/203.html
B. Н. СНЫТНИКОВ, В. Н. ПАРМОН. Жизнь создает планеты? // Наука из первых рук. № о. 2004. С. 20–31. http://evolbiol.ru/npr_snytnikov.pdf
М. А. ФЕДОНКИН. Сужение геохимического базиса жизни и эвкариотнзация биосферы: причинная связь // Палеонтологический журнал. № 6. 2003. С. 33–40.
М. А. ФЕДОНКИН. Геохимический голод и становление царств // Химия и жизнь, http://elementy.ru/lib/25583/25585
Время появления жизни на Земле точно не известно. Ясно одно: если наша планета когда-то и была безжизненной, то не очень долго. Земля сформировалась 4,5–4,6 млрд лет назад, но от первых 700–800 млн лет ее существования в земной коре осталось слишком мало следов. Главное, не сохранилось осадочных пород, в которых в принципе могли бы быть обнаружены следы жизни.
Но имеются доказательства того, что гидросфера – водная оболочка нашей планеты – появилась очень рано. Об этом свидетельствуют, например, кристаллы циркона возрастом 4,4 млрд лет, обнаруженные в Западной Австралии. Строение и изотопный состав этих кристаллов позволяют предположить, что они сформировались в присутствии воды.
Самым ранним свидетельством жизни считается облегченный изотопный состав углерода из графитовых включений в кристаллах апатита, найденных в Гренландии в отложениях возрастом 3,8 млрд лет. В этих включениях повышено процентное содержание легкого изотопа углерода 12С, что может быть результатом жизнедеятельности автотрофов – организмов, способных синтезировать органику из СО2. Однако в ходе некоторых геологических процессов фракционирование изотопов углерода может проходить и без участия живых организмов. А это означает, что те древние кусочки графита, о которых идет речь, в принципе могли приобрести свой состав и в отсутствие доисторических существ.
Древнейшие ископаемые микроорганизмы возрастом около 3,5 млрд лет из Южной Африки внешне напоминают одноклеточных цианобактерий Synechococcus, хотя на внешнее сходство в данном случае едва ли стоит полагаться. Скорее всего, настоящие цианобактерии появились позже – 2,5–2,7 млрд. лет назад.
Чуть более поздние отложения возрастом 3,7 млрд лет из той же Гренландии содержат в себе уже более достоверные следы жизни. Эти следы опять-таки представляют собой облегченный изотопный состав углерода, но в данном случае вероятность его абиогенного происхождения незначительна.
Но какая это была жизнь – РНКовая или уже "современная", ДНК-РНК-белковая, доклеточная или клеточная, – определить невозможно.
Однако можно уверенно сказать, что 3,55 млрд лет назад на Земле уже жили разнообразные микроорганизмы, напоминающие бактерий. В отложениях этого возраста появляются первые строматолиты – особые слоистые осадочные образования, формирующиеся в результате жизнедеятельности микробных сообществ. Здесь же найдены и сами окаменевшие микроорганизмы, напоминающие формой клеток некоторых современных бактерий. Это, конечно, ДНК-РНК-белковые клетки. С этого момента, собственно, и начинается палеонтологическая летопись как таковая. Самые древние (и самые интересные!) этапы становления жизни, включая эпоху РНК-мира, появление генетического кода и переход к ДНК-РНК-белковой жизни, к сожалению, не оставили внятных следов в земной коре. Поэтому их можно пока реконструировать только теоретически.
Таблица 1. Международная геохронологическая шкала (по Gradstein et al. 2004)
По форме клеток невозможно точно определить, к какой группе микробов относятся древнейшие ископаемые организмы, а кроме формы, от бактерий в палеонтологической летописи практически ничего не остается. Изредка, правда, удается найти "молекулярные окаменелости", или биомаркеры, – остатки некоторых органических молекул (более простых, чем ДНК, РНК и белки). Но и этого недостаточно для идентификации. Поэтому главным способом реконструкции древнейших этапов развития земной жизни сегодня является сравнительно-генетический анализ. Сравнивая между собой геномы современных микробов, ученые строят эволюционные "деревья", восстанавливая тот порядок, в котором происходило разделение эволюционных линий (для этого существуют весьма совершенные и сложные математические методики). Затем, зная примерную скорость накопления генетических изменений в разных участках генома, пытаются провести "калибровку" полученного древа, то есть датировать его узлы (точки разветвления). Палеонтологические данные тоже используются для калибровки там, где это возможно.
В течение очень долгого времени единственными живыми организмами на планете были прокариоты – бактерии и археи. Они встраивались в геохимические циклы, получая необходимую для жизни энергию за счет различных окислительно-восстановительных реакций.
Последняя фраза, возможно, требует пояснений. Что значит "встраивались в геохимические циклы"? В поверхностных оболочках Земли – литосфере, атмосфере и гидросфере – как в древности, так и поныне происходит множество химических реакций и осуществляется круговорот веществ. Прокариоты с самого начала обладали уникальными высокоэффективными катализаторами – белками-ферментами, которые в принципе в состоянии катализировать (то есть многократно ускорять) чуть ли не любую мыслимую химическую реакцию. Если реакция идет с выделением энергии, эта энергия может быть "подхвачена" ферментами – АТФ-синтазами – и использована для синтеза АТФ. Имея запас АТФ, другие ферменты получают возможность осуществлять и такие химические реакции, которые идут не с выделением, а с поглощением энергии. В том числе синтез органики из углекислого газа. Вот, собственно, и весь секрет древней микробной жизни, ее химическая основа.
Древнейшие прокариоты, скорее всего, были хемоавтотрофами (см. врезку). Они "пристраивались" к какой-нибудь химической реакции, которая шла и без их участия, сама по себе, только медленно. При помощи подходящего фермента они начинали катализировать эту реакцию, многократно ускоряя ее, а выделяющуюся энергию использовали для синтеза АТФ.
Прокариоты и эукариоты, автотрофы и гетеротрофы. Биологи делят все живое (исключая вирусы, которых обычно не считают живыми) на три неравные части, называемые надцарствами: археи, бактерии и эукариоты. Первые две группы объединяют под общим названием "прокариоты".
Прокариоты не имеют клеточного ядра, их геном находится прямо во внутренней среде клетки (цитоплазме) и обычно имеет вид единственной кольцевой молекулы ДНК (кольцевой хромосомы). У прокариот нет настоящего полового размножения, точнее говоря, в их жизненном цикле отсутствует фаза образования половых клеток и их попарного слияния в клетку с двойным набором хромосом – зиготу. У прокариот также нет внутриклеточных органелл, окруженных двойными мембранами, – митохондрий и пластид.
Археи отличаются от бактерий в основном на молекулярном уровне. Внешне, по образу жизни или по способу получения энергии различить их довольно трудно. Правда, есть некоторые типы обмена веществ, характерные только для архей (например, метаногенез) или только для бактерий (например, кислородный фотосинтез). У архей по-другому устроены мембраны и клеточные стенки. У них, в отличие от бактерий, чаще встречаются интроны – некодирующие вставки в генах – и гистоны – специальные белки, участвующие в упаковке геномной ДНК. Архей чаще, чем бактерии, встречаются в различных экстремальных местах обитания. Например, есть архей, которые чувствуют себя комфортно в кипятке, а при 80 °C начинают страдать от холода. Только среди архей встречаются микробы, паразитирующие на других микробах. Главные различия архей и бактерий – в нуклеотидных последовательностях их генов. Судя по величине этих различий, эволюционные линии бактерий и архей разделились чрезвычайно давно, на самой заре клеточной жизни.
Эукариоты имеют клеточное ядро и окруженные двойной мембраной органеллы – митохондрии, служащие для кислородного дыхания, и пластиды, служащие для фотосинтеза (последние характерны только для растительных клеток). Доказано, что митохондрии и пластиды являются потомками симбиотических бактерий (см. главу "Великий симбиоз"). К эукариотам относятся разнообразные одноклеточные формы, обычно называемые "простейшими" (амебы, жгутиконосцы, инфузории, радиолярии и др.), а также многоклеточные – грибы, растения и животные. В жизненном цикле эукариот есть чередование гаплоидной и диплоидной фаз: пара гаплоидных (с одинарным набором хромосом) половых клеток сливается, образуя диплоидную (с двойным набором хромосом) клетку – зиготу. Это слияние двух половых клеток называют оплодотворением. Затем в какой-то момент происходит редукционное деление, или мейоз, в результате которого из диплоидной клетки образуются четыре гаплоидные.
По способу получения органических веществ все организмы делятся на автотрофов и гетеротрофов. Организмы, умеющие превращать неорганический углерод в органические соединения, называются автотрофными,т. е. "самостоятельно питающимися". Организмы, не способные к этому, – их называют гетеротрофами – являются по сути дела нахлебниками автотрофов: они целиком и полностью зависят от производимых ими органических соединений.
Автотрофы синтезируют органику из СО2, используя для этого энергию, полученную из какой-нибудь окислительно-восстановительной реакции (хемоавтотрофы) или путем фотосинтеза (фотоавтотрофы). Фотоавтотрофы, в свою очередь, делятся на аноксигенных (не выделяющих кислород) и оксигенных, или кислородных.
Большинство архей – хемоавтотрофы, среди бактерий широко распространены все известные типы метаболизма, эукариоты являются либо оксигенными фотоавтотрофами (растения, одноклеточные водоросли), либо гетеротрофами (животные, грибы, многие простейшие).
Подобные примитивнейшие экосистемы существуют и по сей день. Одну из них я имею удовольствие наблюдать каждое лето в северной Карелии, на берегу Белого моря, где провожу отпуск с семьей. Возле нашей избушки есть ручей, вытекающий из болота и бегущий к морю по дну глубокого оврага. Из крутых склонов оврага бьют ключи с ледяной прозрачной водой. Там, где ключевая вода смешивается с болотной, возникают и быстро растут комки мягкой скользкой рыжей мути довольно неприятного вида. Если долго нет дождей и течение в ручье замедляется, эта рыжая муть может заполнить все русло. Но достаточно хорошего ливня, чтобы вся эта гадость была смыта в море и ручей очистился. Если муть высушить, она превращается в кирпично-красный порошок, который отлично притягивается магнитом. По правде говоря, это самая обыкновенная ржавчина (Fe2O3), только склеенная чем-то слизистым и почти невесомым.
Перед нами простейшая прокариотная экосистема. Мы видим естественный геохимический процесс, к которому "пристроился" автотрофный микроорганизм. Геохимический процесс в данном случае состоит в том, что подземные ключи, богатые недоокисленным растворенным железом (Fe2+), выходят на поверхность и соприкасаются с кислородом атмосферы. Кислород начинает окислять железо, которое превращается в нерастворимую ржавчину и выпадает в осадок. Этот процесс шел бы и без вмешательства микроорганизмов, только не очень быстро. Но за дело берутся непрошеные помощники – хемоавтотрофные железобактерии. Они многократно ускоряют процесс, а выделяемая ими "слизь" (она состоит в основном из углеводов) склеивает ржавчину в скользкие комки, которые нам и приходится долго разгонять, прежде чем набрать из ручья ведро воды. Впрочем, польза от этих бактерий тоже есть – именно они отвечают за образование так называемых "болотных руд", из которых можно даже выплавлять железо (если больше не из чего). В прошлом (особенно в протерозойскую эру) подобные бактерии играли ключевую роль в формировании крупнейших железорудных месторождений.
Процесс до крайности неэффективен – чтобы увеличить свою биомассу на 1 грамм, бактерии должны окислить полкило железа. И цикл в данном случае не замкнут: недоокисленное железо поступает из земных недр, где его пока еще много, а окислившись, выпадает в осадок и сохраняется в таком виде неопределенно долгое время, накапливаясь в земной коре (в том числе в виде железных руд). И тем не менее система работает. Несмотря на всю ее примитивность, она обладает известным преимуществом – железобактерии практически не зависят от других живых существ. Они вполне самодостаточны, если не считать того, что используемый ими для окисления железа кислород производится не геохимическими процессами, а другими живыми организмами – оксигенными фотоавтотрофами (растениями, одноклеточными водорослями и цианобактериями).
Одно из самых удивительных открытий в геологии за последние десятилетия состоит в том, что, как выяснилось, практически во всех геологических процессах, которые сформировали осадочный чехол нашей планеты, активно участвовали (и продолжают участвовать) микроорганизмы. Доказано, что многие месторождения руд – не только железных, но и золотых, марганцевых и многих других – имеют биологическое происхождение. Эти месторождения были некогда сконцентрированы микробами, постепенно осаждавшими на своих клеточных стенках ионы различных металлов. И если рассмотреть строение рудного вещества под микроскопом, становятся видны тельца, точь-в-точь такие, какими некогда были клетки микроорганизмов. В ходе своей жизнедеятельности микробы активно преобразуют соединения железа, серы, фосфора, образуя пириты, фосфориты и другие минералы. Как это происходит, не всегда понятно. Так что оценить масштабы этой четырехмиллиардолетней деятельности пока никто не берется. Между тем, зная механизм преобразования минералов микробами, можно было бы по внешнему виду минерала (в микромасштабе) и его составу отличить, создан ли минерал микроорганизмами или косной материей. Этот вопрос остро стоит, например, для марсианских минералов. Если бы удалось найти надежные признаки биологической активности в осадочных породах, то вопрос о жизни на Марсе был бы решен. Естественно, это касается и древней жизни на Земле.
Но область эта еще очень слабо изучена. И начинать приходится с частностей.
Месторождения цинка возникли благодаря бактериям. В осадочных породах иногда встречаются крошечные шарики сернистого цинка. Как выяснилось, в их образовании участвуют микроорганизмы.
При извержении вулканов земная поверхность, будь то суша или морское дно, покрывается вулканическим пеплом. Этот пепел содержит очень много цинка, меди и свинца, которые затем не столько разносятся повсюду с водными потоками и выветриванием, сколько концентрируются в местах извержения. С течением времени вулканические лавы и пеплы при участии микроорганизмов могут превратиться в другие минералы, например в глины.
Американские ученые из Калифорнийского университета и Национальной лаборатории имени Лоуренса в Беркли изучили материал из закрытой и заполненной водой шахты свинцово-цинкового месторождения Пикетт в юго-западном Висконсине. С 1999 года в тоннелях этой шахты вместе с микробиологами начали работу водолазы. Они увидели и засняли удивительную картину. В заброшенной шахте шла активная жизнь: стенки тоннеля были покрыты толстым слоем красно-оранжевой слизи и белыми сгустками. Это были различные анаэробные бактерии, получающие энергию с помощью окисления железа и преобразования серы. Оранжевый слой – цвет ржавчины – обозначал места деятельности бактерий, окисляющих железо, а белые сгустки – сульфатредукторов, восстанавливающих сульфат (SО42-) и использующих в своей жизнедеятельности ионы цинка. Наночастицы сернистого цинка – сфалерита – и окрасили эти пятна в белый цвет. Примерно такие бактерии работали на Земле в архейскую эру и продолжают работать сейчас в глубинах океанов, в глубоком почвенном слое, в рудных месторождениях.
Ученые обнаружили, что в бактериальной биопленке образуются не только наночастицы сфалерита, но и относительно крупные (размером около микрона) шарики этого минерала. Каждый такой шарик состоит из множества наночастиц. Сформировавшись, шарик в силу своих солидных для молекулярного мира размеров становится менее уязвим для растворения и выноса и в результате остается в бактериальной пленке. Наночастицы имеют размеры в тысячи раз меньшие, сравнимые с размерами кластеров молекул воды. Поодиночке они были бы рассеяны в окружающем пространстве.
Выяснилось, что цинковые шарики образуются при взаимодействии ионов цинка с белками и пептидами, богатыми аминокислотой цистеином (это одна из двух аминокислот, в состав которых входит сера). Ученые предполагают, опираясь на картину расположения клеток, органического вещества и цинковых сфероидов, что эти шарики организуются не за счет инкрустации стенок живых или мертвых клеток, а на скоплениях органической материи от распавшихся клеток. Цинковые наночастицы связываются с цистеином – таким образом образуется "затравка", к которой затем прикрепляются и цистеинсодержащие пептиды, и дополнительные цинковые наночастицы. В отсутствие цистеина крупные цинковые шарики не образуются.
Все это ученые наблюдали под микроскопом, изучая и естественные руды, и материал, полученный в лабораторных опытах. Связывание цинка цистеином не было таким уж неожиданным для исследователей: ведь ферменты с высоким содержанием цистеина выполняют в клетке функцию поставщика необходимых ионов металлов – железа, марганца и др. Видно, в этот реестр входит и цинк.
Теперь, обнаружив микрошарики сернистого цинка в осадочных породах, можно с полным основанием подозревать, что без участия бактерий тут не обошлось. Вот так в ходе, казалось бы, сугубо специальных исследований и познается прошлое и будущее жизни не только на Земле, но и на других планетах.
(Источник: John W. Moreau, Peter К. Weber, Michael С. Martin, Benjamin Gilbert, Ian D. Hutcheon, Jillian F. Banfield. Extracellular Proteins Limit the Dispersal of Biogenic Nanoparticles // Science. 2007. V. 316. P. 1600–1603.)