bannerbannerbanner
Китайская физика. Опережала ли традиционная наука Запад?

Юрат Рашитович Мусин
Китайская физика. Опережала ли традиционная наука Запад?

Полная версия

Основные проблемы, занимавшие средневековых ученых, были богословскими, философия понималась как способ истолкования Священного Писания, логической формулировки догматов Церкви и рациональных доказательств бытия Бога. Учения Аристотеля и Платона, ставшие частично известными благодаря трудам исламских переводчиков и оставшимся контактам с Византией, стали отправной точкой религиозных споров. Если Аристотель принимался за основной источник сведений по логике и физике, то за Платоном признавался наивысший авторитетом в метафизике и богословии. Аристотель дал богословам наукообразный аппарат, но платонизм как учение оказался настолько всеобъемлющим, что позволял удовлетворить различные духовные запросы и стал основой различных, подчас взаимоисключающих философско-религиозных доктрин. Интересно, что платонизм больше импонировал православным богословам, а аристотелизм был ближе схоластам-католикам. Благодаря авторитету Отцов Церкви и в первую очередь Фоме Аквинскому (1225–1274) философия Аристотеля и его физика оказались интегрированы с христианским вероучением, что существенно ограничивало пересмотр ошибочных гипотез, лежащих в их основе. Главным технологическим достижением Средневековья, сыгравшим революционную роль в расширении аудитории, которой стали доступны книги, является изобретение в 1440 году немцем Иоганном Гуттенбергом печатного станка.

Средневековье Европы заканчивается Ренессансом (Возрождением) – тектоническим периодом, предшествующим Новому времени и характеризуемым становлением гуманистического мировоззрения и возрождением античной науки. Ренессанс – не столько исторический период, сколько интеллектуальное и культурное движение. Явление наблюдалось сразу в нескольких европейских странах, поэтому точно назвать место и время появления Ренессанса трудно. Но раннее итальянское Возрождение началось в 14-ом веке во Флоренции. Из Италии Ренессанс просочился в другие европейские страны. Так, французский Ренессанс расцветает с конца 15-ого века, в Англии, Германии и Нидерландах, так называемое «Северное Возрождение» началось позже, и оказалось тесно связанным с движением за Реформацию церкви (16–17 века), породившим новые христианские конфессии (лютеранство, кальвинизм, англиканство и т. д.), то есть протестантизм.

Астрономическая революция 17 века

«Почему движутся планеты?» – этот вопрос интересовал людей с глубокой древности. Планеты (в дословном переводе с латинского – «блуждающие звезды») всегда были в центре внимания пытливых умов. По мнению Платона, планеты наделены разумом и в силу этого сами понимают, каким образом и куда им надо двигаться. Аристотель предложил в качестве «перводвигателя планет» неподвижного Бога. В средние века планеты доверили двигать ангелам. Декарт заменил ангелов и перводвигатель эфирными вихрями, увлекающими в своем движении планеты. Убеждение, что планеты надо двигать, а не то они остановятся, было всеобщим. К концу 16-того века некоторые ученые стали понимать, что если исключить силы трения, то нет необходимости в силах, поддерживающих движение. Планеты стали двигаться в пустоте. Коперник, «остановив Солнце и заставив двигаться Землю», сделал Землю планетой.

Иоганн Кеплер (1571–1630)


Иоганн Кеплер – немецкий математик, астроном, механик, оптик, первооткрыватель законов движения планет Солнечной системы. В ходе астрономических исследований Кеплер внёс вклад в теорию конических сечений. Он составил одну из первых таблиц логарифмов, ввел понятие о среднем арифметическом значении, исследовал симметрию снежинок, развивал идеи, ведущие к понятиям интеграла и проективной геометрии. Ввёл в физику термин «инерция», независимо от Галилея сформулировав первый закон механики Ньютона, построил общую теорию линз и их систем. Усовершенствовав телескоп Галилея, предложил свой вариант – «телескоп Кеплера», вытеснивший предшественника и использующийся даже сегодня.

В начале 17 века Иоганн Кеплер, обрабатывая наблюдения Тихо Браге за движением планет (в основном Марса), открыл три закона планетных движений, известных как законы Кеплера:

1) Каждая планета движется в пространстве по эллипсу, в одном из фокусов которого находится Солнце.

2) Радиус-вектор планеты описывает равные площади за равные промежутки времени.

3) Квадраты периодов обращения двух планет вокруг Солнца пропорциональны кубам больших полуосей их орбит.


1-ый закон Кеплера


2-ый закон Кеплера


3-ый закон Кеплера


Из всех открытий Кеплера отметим только революционное для его эпохи открытие – траектории планет являются эллипсами, а не окружностями! Вся сложная система эпициклов, введенных, чтобы объяснить неравномерные и даже попятные движения планет (того же Марса), наблюдаемые с Земли, оказалась ненужной. Коперник за счет переноса центра с Земли на Солнце смог уменьшить число эпициклов с 77 (у Птолемея) до 34, а Кеплер свел их нулю! Как ни удивительно, но ни Галилей, ни Браге с этим не согласились. Принять уродливые эллипсы вместо божественно совершенных окружностей для них было противоестественно.

Сам Кеплер, обнаружив, что планеты движутся по «некрасивым» эллиптическим орбитам, начал искать новую красоту в устройстве Мира. И вскоре он её «нашел» – оказалось, что орбиты планет вписаны в правильные многогранники (платоновы тела), которых оказалось ровно столько, чтобы «объяснить», почему планет только шесть (другие планеты еще были неизвестны). Обнаружение других планет разрушило эти построения – в очередной раз красота пифагорейской идеи оказалась миражом.



Рождение физики

Физика – сравнительно молодая наука. Общепринято датировать её рождение 17-ым веком и связывать с именами Галилея и Ньютона. Ранее она была растворена в «Натуральной Философии» – сложном коктейле сведений, весьма разбухшем по сравнению с античной натурфилософией. В него включились разнородные факты из механики, астрономии, химии, геологии, физиологии и т. п., разбавленные буферным раствором религиозно-философских идей.

Дистилляция этого раствора началась в западной Европе, что в конечном итоге позволило всему христианскому Западу занять доминирующие позиции перед лицом более древних и могущественных цивилизаций Востока. Сам исходный раствор был очень богат не только полезными компонентами (фактами, технологиями, как созданными в Европе, так и заимствованными у Китая и мусульманского Востока), но и буферными (не позволяющими менять концентрацию религиозно-философских идей). Европейская критика Аристотеля в 15–16 веках была очень робкой, так как его идеи (где они не противоречили учению церкви) стали базисом физических объяснений. Очевидные нелепости частных утверждений великого Философа разрешалось устранять, но основные его положения поддерживала церковь как авторитетом Отцов Церкви, так и кострами Святой инквизиции.

Основным механизмом «дистилляции» натурфилософии был Эксперимент – физический аналог юридической процедуры дискуссии между защитой и обвинением. Физик выдвигает гипотезу (обвинение), а природа пытается «защищаться» в эксперименте путем согласия, отрицания или умолчания. В европейской традиции закрепился принцип презумпции невиновности: «Бремя доказательства вины лежит на обвинителе». Он существовал еще в Древней Греции, но на Западе вновь возник во времена инквизиции как противовес уверенности инквизиторов в виновности преследуемых ими еретиков. В Китае вплоть до Нового времени действовал принцип презумпции виновности, который требовал от судей пытать обвиняемых, чтобы добиться от них правды (китайские пытки, особенно в древности, были одними из самых жестоких и изощрённых в мире). В любом случае представления о необходимости «пытать природу» сохранились в названиях современных научных объединений (например, МОИП – Московское общество испытателей природы, существующее с 1805 года). Для пыток необходимы пыточные орудия, у физиков эти устройства называются физическими приборами. В наше время их существует невероятное множество с самыми сложными функциями и в широчайшем диапазоне размеров: от микроскопических чипов до ускорителей, не умещающихся в границах одного государства, или системы радиотелескопов, расположенных на разных континентах. В момент рождения физики приборов было мало и в основном они использовались в навигации и астрономии (астролябия и секстант для измерения углов, компас), а также в торговле (мерная линейка, бочка, весы) и в грубом измерении времени (песочные, водяные и механические часы).

Галилей и экспериментальный подход

Галилео Галилей – итальянский физик, механик, астроном, философ, математик, оказавший значительное влияние на науку своего времени. Галилей – основатель экспериментальной физики. Своими экспериментами он убедительно опроверг умозрительную физику Аристотеля и заложил фундамент классической механики. Одним из первых использовал телескоп для наблюдения небесных тел и сделал ряд выдающихся астрономических открытий. Наиболее известная фигура в конфликте науки с церковью, считается одним из «отцов» классической механики.


Галилео Галилей (1564–1642)


Согласно легенде, в 1589 году Галилей провёл эксперимент, сбросив два шара различной массы со знаменитой падающей башни в Пизе, чтобы продемонстрировать, что время падения не зависит от массы шара (Аристотель считал, что массивные тела падают быстрее). Современные историки науки полагают, что этот опыт был только мысленным, так как никаких записей об этом эксперименте Галилей не сделал, но подробно описал свои менее убедительные опыты, посвященные этой же тематике.

 

Каким же образом Галилей пришел к своему знаменитому утверждению? Известно, что он экспериментировал с гладкой наклонной плоскостью, по которой скатывал тяжелые шары. Выбирая достаточно протяженную плоскость и малые углы её наклона, можно уменьшить скорость движения тела, что позволит с достаточной точностью измерить время движения тела по плоскости даже с помощью грубых измерителей времени (Галилей использовал водяные часы и собственный пульс).

Результаты экспериментов и позволили Галилею утверждать, что:

1. Свободное падение всех тел в пренебрежении сопротивлением воздуха происходит с постоянным ускорением.

2. Скорость падения нарастает пропорционально времени движения.

3. Пройденный путь пропорционален квадрату времени движения.


Таким образом, Галилея серией простых опытов смог решить задачу о падении тела, не прибегая к спекулятивным рассуждениям и философским гипотезам Аристотеля, и, более того, получил математические выражения для законов изменения скорости падающего тела и проходимого телом пути. Фактически он указал путь, по которому дальше пошла наука физика – выполнение экспериментов, то есть многократное повторение опытов в контролируемых условиях с последующей математической обработкой результатов измерений.

Выдающийся физик современности Стивен Хокинг писал: «Галилей, пожалуй, больше, чем кто-либо другой из отдельных людей, ответствен за рождение современной науки. Знаменитый спор с Католической Церковью занимал центральное место в философии Галилея, ибо он одним из первых объявил, что у человека есть надежда понять, как устроен мир, и, более того, что этого можно добиться, наблюдая наш реальный мир».

Фигура Галилея настолько значительна в истории возникновения научной механики, что представляется целесообразным привести о нем краткие биографические сведения и вспомнить историю с его знаменитой фразой «И все-таки она вертится!».

Галилей родился в 1564 году в итальянском городе Пиза в семье родовитого, но обедневшего дворянина Винченцо Галилея, видного теоретика музыки и лютниста. В семье Винченцо Галилея и Джулии Амманнати было шестеро детей, но выжить удалось четверым: Галилео (старшему из детей), дочерям Вирджинии, Ливии и младшему сыну Микеланджело. В 1572 году Винченцо переехал во Флоренцию, столицу Тосканского герцогства. Правящая там династия Медичи оказывала постоянное покровительство искусству и наукам. Начальное образование Галилей получил в монастыре, как тогда было принято. В учебе продемонстрировал большие успехи и подумывал о карьере священника, но отец хотел пустить его по медицинской линии, и по настоянию отца 17-летний Галилео оказался на медицинском факультете Пизанского университета, где проучился три года, но завершить обучение не смог, так как у отца начались финансовые проблемы и он не смог больше платить за обучение. Тем не менее эти три года были очень значимы для юноши – он впервые познакомился с математикой, основательно изучил труды античных философов и элементы астрономии. Тогда же он познакомился с гелиоцентрической теорией Коперника. Как это все совмещалось с изучением медицинских предметов – непонятно. Во всяком случае пизанские профессора не дали ему бесплатную стипендию для продолжения обучения, и диплома врача он не получил. Тем не менее через пять лет, в 1589 году, Галилей вернулся в Пизанский университет, но уже не студентом, а профессором и стал преподавать астрономию, механику и математику! (Ему оказал протекцию сам тосканский герцог Фердинанд Медичи. Правда, жалованье ему назначили минимальное: 60 скудо в год, тогда как профессор медицины получал 2000 скудо). В 1591 году умер отец, и ответственность за семью перешла к Галилео (в первую очередь он должен был позаботиться о воспитании младшего брата и о приданом двух незамужних сестёр).

В 1592 году Галилей переехал в Падую (Венецианская республика), где продолжил преподавать в местном (весьма престижном) университете. К этому времени он стал уже известным профессором, «… справедливо признаваемым за самого сведущего в математических науках». Годы пребывания в Падуе (1592–1610) были вершиной популярности Галилея. Студенты толпами сбегались на его лекции, правительство поручало разработку технических устройств, с ним активно переписывались молодой Кеплер, Браге и другие научные авторитеты того времени. Пик популярности приносит изобретение телескопа, который он изготовил в 1609 году, узнав об изобретении зрительной трубы в Голландии. Используя свой телескоп, Галилей открывает горы на Луне, показывает, что Млечный Путь состоит из отдельных звёзд, но особенно поразили современников обнаруженные им четыре спутника Юпитера (1610). В честь четырёх сыновей своего покойного покровителя Фердинанда Медичи Галилей назвал эти спутники «Медичийскими звёздами». Популярность зашкаливает, наблюдения в телескоп становятся модным. Наступает всеобщее признание. Галилей становится самым знаменитым учёным Европы, в его честь сочиняются оды, где он сравнивается с Колумбом. Свои первые открытия с телескопом Галилей описал в сочинении «Звёздный вестник» (1610). Книга имела сенсационный успех по всей Европе, даже коронованные особы спешили заказать себе телескоп (французский король Генрих IV просит Галилея «… открыть и для него какую-нибудь звездочку»).

В эти годы Галилей наконец выдает замуж своих сестер (залезая в огромные долги), вступает в гражданский брак с венецианкой Мариной Гамба, становится отцом (сын и две дочери). Общеевропейская слава и нужда в деньгах толкнули Галилея на неосмотрительный, как позже оказалось, шаг: в 1610 году он покидает Венецию, где он был недоступен для инквизиции и перебирается во Флоренцию. Герцог Козимо II Медичи, сын Фердинанда, обещал Галилею почётное и доходное место советника при тосканском дворе. Обещание он сдержал, что позволило Галилею решить проблему долгов, но лишило его защиты от нападок Святой инквизиции. Доносы в инквизицию поступали на Галилея и раньше, но хода им не давали покровители. Галилей переоценил свое влияние на Папу Римского Урбана VIII и решил дать бой устаревшей системе Птолемея, чтобы освободить дорогу гелиоцентрической системе, которую он развивал в течение 30 лет. Для этого он опубликовал книгу «Диалог о двух главнейших системах мира – птолемеевой и коперниковой» (1632), которую для маскировки снабдил предисловием, где объявлял себя сторонником птолемеевой системы. Однако столь наивная уловка не сработала, и давние враги Галилея – монахи-иезуиты – убедили Урбана, что под одним из действующих героев «Диалогов» простаком-Симпличио выведен сам Урбан (Книга была написана в форме диалога между тремя любителями науки: коперниканцем Сальвиати, нейтральным участником Сагредо и Симпличио, приверженцем Птолемея). Книга была написана не на латыни, как тогда было принято для научных публикаций, а на «народном» итальянском языке, то есть предназначалась для широкой публики. Аргументы Сальвиати (Галилея) были неотразимы, а сам текст был превосходен, так как Галилей обладал несомненным литературным талантом (даже сейчас чтение «Диалогов» доставляет большое удовольствие). Упрямый и самовлюбленный Урбан впал в ярость – книга была запрещена и изъята, а сам Галилей был вызван в Рим на суд Святой инквизиции по обвинению в ереси. Несмотря на заступничество герцога Фердинанда, Галилея пытали (а чем Италия лучше Китая?) и заставили подписать отречение от своих коперниканских убеждений. Легенда говорит, что после произнесения слов отречения, Галилей тихо добавил: «И все-таки она вертится!». Галилей сравнительно легко отделался – его объявили не еретиком, а «сильно заподозренным в ереси», что спасало от костра. Вскоре Галилею было разрешено отправиться на родину, и он поселился в Арчетри, рядом с монастырём, где находились его дочери. Здесь он провёл остаток жизни под домашним арестом и под постоянным надзором инквизиции. Церковь реабилитировала Галилея только в 1992 году (божьи жернова работают медленно, но верно).

Несмотря на варварское обращение со светилом мировой науки, решение Урбана оказалось полезным для развития физики. Изолировав Галилея от пропаганды идей гелиоцентризма, оно позволило последнему сосредоточиться на обдумывании идей, положивших начало двум новым физическим наукам. Несмотря на полную потерю зрения в 1635 году, он продолжал научные исследования, опираясь на верных учеников: Кастелли, Торричелли и Вивиани. Галилей, понимавший необходимость точного измерения времени за год до смерти предложил идею маятниковых часов, реализованную через 15 лет Гюйгенсом (маятниковые часы на 300 лет стали наиболее точным прибором для измерения времени). Еще один физический прибор – термометр – Галилей изобрел и изготовил сам. Даже в живший в 19-веке Майер в восторге писал про него: «Термометр – могущественный инструмент в титанической борьбе между истиной и заблуждением». Последней книгой Галилея стали «Беседы и математические доказательства двух новых наук» (1638), где излагаются основы кинематики и сопротивления материалов. Этот труд стал настольной книгой Гюйгенса и Ньютона, завершивших начатое Галилеем построение оснований механики.

Механика Ньютона

Если, используя библейские термины, уподобить Галилея Иоанну Предтече от механики, то Ньютону будет соответствовать Иисус Христос! Сами англичане берут даже выше и отождествляют его с Саваофом – создателем Мира. Как сказано в книге Бытия,

1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16 
Рейтинг@Mail.ru