bannerbannerbanner
Как микробы управляют нами. Тайные властители жизни на Земле

Эд Йонг
Как микробы управляют нами. Тайные властители жизни на Земле

Полная версия

Скептики, вероятно, возмутятся и скажут, что мыши, данио-рерио и гавайские эупримны в микробах не нуждаются: стерильная мышь все так же выглядит как мышь, бегает как мышь и пищит как мышь. Убрав бактерии, мы получим все то же животное. Однако стерильные животные обитают в неприхотливой среде – в пузырьках с управляемым микроклиматом, изобилием пищи и воды, полным отсутствием хищников и каких-либо инфекций. В жестоких природных условиях они мало протянут. Выжить они смогут, но, скорее всего, недолго. Они способны развиваться сами, но с партнерами-микробами им будет гораздо проще.

Почему? Зачем животным перекладывать ответственность за свое развитие на другие виды? Почему бы не делать все самим? «Думаю, это неизбежно, – говорит Джон Ролз, работавший со стерильными мышами и моллюсками. – Микробы – неотъемлемая часть жизни животного. От них не избавиться». Не забывайте, что животные возникли в мире, где уже на протяжении миллиардов лет обитали микробы. Они правили планетой задолго до того, как появились мы. А когда мы все-таки появились, у нас, разумеется, развились механизмы взаимодействия с окружающими нас микробами. Было бы глупо, если бы они не развились, – все равно что переехать в другой город, нацепив беруши, повязку на глаза и противогаз. К тому же развитие отношений с микробами оказалось не только неизбежным, но и полезным. Они кормили первых животных. Более того, их присутствие сигнализировало о том, где больше питательных веществ, где благоприятнее температура, где можно поселиться. Первые животные чувствовали эти сигналы и тем самым получали ценную информацию об окружающем мире. И как мы вскоре увидим, следы их взаимодействия в древности сохранились до сих пор.

Николь Кинг сейчас вдалеке от дома. Она руководит лабораторией в Калифорнийском университете в Беркли, но сейчас она в отпуске в Лондоне. Она планирует отвести восьмилетнего сына Нейта на дневной показ мюзикла «Билли Эллиот», но при условии, что он спокойно просидит полчаса с нами на скамейке в парке, пока мы обсуждаем малоизвестную группу существ под названием хоанофлагелляты. Кинг – одна из немногих ученых, которые их изучают. Она ласково называет их «хоаны», так что я тоже буду[89].

Их можно найти в воде где угодно – от тропических рек до морей подо льдами Антарктиды. Пока мы о них разговариваем, Нейт, до этого тихонько рисовавший что-то в блокноте, радостно взвизгивает и рисует одну для нас. Он чертит овал с изогнутым хвостиком и воротником из жестких волосков – похоже на сперматозоид в юбочке. Хвостик, дергаясь, отправляет бактерий и другие мелкие частицы к воротнику, они там застревают, поглощаются и перевариваются: хоаны – активные хищники. Рисунок Нейта замечательно передает их суть, в особенности тот факт, что хоаны одноклеточные. Они, как и мы с вами, эукариоты, и у них, в отличие от бактерий, есть бонусы в виде митохондрий и ядра. Однако, как и бактерии, они состоят из одной-единственной плавающей клетки[90].

Иногда эти клетки ведут общественный образ жизни. Salpingoeca rosetta, любимый вид Николь, часто формирует колонии-розетки. Ее сын может и их нарисовать – десятки хоан образуют хоровод, выставив жгутики наружу, словно какая-то волосатая малинка. Кажется, будто хоаны для этого сюда и приплыли, но на самом деле эта малинка – результат деления, а не встречи. Хоаны размножаются делением надвое, но иногда у пары дочерних клеток не получается разделиться полностью, и они так и остаются соединенными короткой перемычкой. Потом это происходит снова и снова, пока неразлучные хоаны не образуют сферу, покрытую одной оболочкой. Это и есть розетка. Эти знания были бы нам бесполезны, если бы не тот факт, что хоаны – ближайшие живущие ныне родственники всех животных на Земле[91]. Они связаны родством с каждой лягушкой, скорпионом, червяком, морской звездой, воробушком. Кинг пытается понять, как появились первые животные, и хоаны приводят ее в восхищение. А процесс, в результате которого появляются розетки и одна клетка становится многоклеточной гроздью, – тем более.

О том, как выглядели первые животные, мы почти ничего не знаем, ведь их мягкие тела не подвергались процессу окаменения. Они приходили и уходили, словно легкий порыв ветра, не оставляя ни единого следа. Зато мы можем строить на их счет вполне обоснованные предположения. Каждое современное животное – это многоклеточное существо, которое развилось из полого сгустка клеток, и ему для выживания нужно питаться, так что логично будет предположить, что эти черты были присущи и нашему общему предку[92]. Значит, возможно, эти розетки – современные образы первых животных. А процесс их создания – деление одной клетки в сплоченную колонию – воспроизводит эволюционный переход, в ходе которого появились сначала примитивные животные, а потом и белки, голуби, утки, дети и все остальные зверушки в парке, в котором мы с Кинг болтаем. Изучая этих безобидных малоизвестных одноклеточных созданий, она практически вплотную подбирается к покрытому тайной зарождению всего нашего царства животных.

Отношения с S. rosetta у нее довольно бурные. Она знала, что в естественных условиях они формируют колонии, но уговорить их повторить то же самое в лаборатории у нее никак не получалось. В руках у нее и у других ученых социальные прежде существа загадочным образом становились одиночками. Она меняла им температуру, уровень питательных веществ, кислотность – бесполезно. В отчаянии она решила заняться секвенированием генома S. rosetta, но и там ее ждали сложности. Кинг кормила S. rosetta бактериями, но теперь ей пришлось избавиться от их клеток, чтобы те не засоряли результаты секвенирования. Она накормила хоан антибиотиками и, к ее удивлению, полностью лишила их способности образовывать колонии. Если раньше они формировали их неохотно, то теперь вообще наотрез отказывались. Значит, за их социальный образ жизни в какой-то мере отвечали бактерии.

Аспирантка Рози Алегадо изолировала микробов из образцов воды без антибиотиков и по очереди стала скармливать их хоанам. Розетки начали снова появляться лишь благодаря одной бактерии из 64. Потому первые опыты Кинг и не удавались – S. rosetta образуют колонии лишь при встрече с нужным микробом. Алегадо его идентифицировала и назвала Algoriphagus machipongonensis – неизвестный прежде вид из группы Bacteroidetes, представители которой живут у нас в кишечнике[93]. Она же выяснила, как именно бактерии побуждают хоан к образованию розеток: они вырабатывают жироподобную молекулу RIF-1. «Я назвала ее RIF, «розеткоиндуцирующий фактор», и добавила номер, потому что наверняка есть и другие», – говорит Рози. И она была права: с тех пор ученые идентифицировали еще несколько молекул, подталкивающих хоан к общественной жизни, у многих других микробов[94].

 

Как предполагает Алегадо, эти вещества сигналят о том, что где-то рядом есть еда. Группа хоан лучше справится с ловлей бактерий, чем одна, так что, почувствовав неподалеку бактерию, они объединяются. «Думаю, хоаны «подслушивают», – размышляет Алегадо. – Плавают они медленно, а бактерии подсказывают им, что они попали туда, где много еды и ресурсов. Тогда можно и розетку образовать».

Что из всего этого следует? Неужели первые животные появились благодаря тому, что бактерии спровоцировали наших одноклеточных предков на образование многоклеточных колоний? Кинг советует подходить к этому вопросу с осторожностью. Современные хоанофлагелляты – наши кузины, а не бабули. Если на основе их поведения можно будет выяснить, как вели себя древние хоаны и как они реагировали на древних микробов, это станет огромным прорывом в науке. Кинг пока в этом не уверена. Сейчас она хочет выяснить, реагируют ли современные животные на бактерий таким же образом и, если да, влияют ли бактерии на развитие хоан и животных с помощью тех же самых молекул. Это существенно укрепило бы теорию о том, что у наших истоков стоял этот древний феномен. «Думаю, никто не станет спорить, что в океанах, где появились первые животные, было множество бактерий, – рассуждает Кинг. – Разных видов бактерий. Они правили миром, а животным приходилось под них подстраиваться. Без натяжки можно полагать, что какие-то из производимых бактериями молекул повлияли на развитие первых животных». Действительно без натяжки – особенно если учесть, что до сих пор творится в Перл-Харбор.

Утром 7 декабря 1941 года эскадрилья японских истребителей нанесла внезапный удар по базе военного флота США, расположенной в бухте Перл-Харбор на Гавайях. Первым потонул линкор «Аризона», унеся с собой жизни более тысячи офицеров ВМС и членов экипажа. Остальные семь линкоров в бухте были разрушены или получили значительные повреждения, как и еще 18 кораблей и 300 воздушных судов. Сейчас в этой бухте куда более спокойно. Хоть она и является по-прежнему важным военным портом и в ней до сих пор стоят несколько громадных кораблей, угроза для нее в первую очередь исходит не с неба, а с моря.

Узнать, что происходит с потонувшими кораблями, можно, кинув в воду что-нибудь металлическое. Через несколько часов на металле начнут расти бактерии. Возможно, за ними последуют водоросли, затем моллюски или морские желуди. Но в течение нескольких дней там появятся белые трубочки. Они маленькие – длиной всего в несколько сантиметров и толщиной в несколько миллиметров. Но вскоре их становятся сотни. Потом тысячи. Миллионы. В конце концов вся поверхность начинает выглядеть как ковер с грубым ворсом на морозе. Эти трубочки вскоре оказываются всюду – на камнях и сваях, на металлических рыболовных сетях и кораблях. Если авианосец постоит в бухте несколько месяцев, трубочки образуют на его корпусе слой в несколько сантиметров. По-научному это называется «биообрастание», а по-простому – «жуткий геморрой». Время от времени ВМС отправляет к кораблям дайверов, и те укрывают пропеллеры и другие открытые конструкции полиэтиленом, чтобы белые трубочки до них не добрались[95].

И создатель, и житель каждого белого цилиндрика – животное. На флоте его называют «червяк-закорючка» (squiggly worm), а Майклу Хэдфилду, морскому биологу при Гавайском университете, оно известно как полихета Hydroides elegans. Открыли ее в Сиднейской бухте, и с тех пор она объявилась в Средиземном море, у Карибских островов, у берегов Японии, у Гавайев – везде, где есть корабли и теплая вода. Цепляясь снизу за судна, построенные человеком, эта профессиональная безбилетница захватила весь мир.

Хэдфилд начал исследовать «червяков-закорючек» в 1990 году по требованию ВМС. Он уже тогда был экспертом по обитающим в морях личинкам, и в ВМС хотели, чтобы он протестировал различные предохраняющие от обрастания краски и выяснил, способны ли какие-то из них отталкивать червей. Однако, как он решил, важнее будет узнать, что именно толкает червей на заселение. Почему они ни с того ни с сего появляются на корпусе судна?

Этот вопрос появился еще в древности. Арман Мари Леруа в своей замечательной биографии Аристотеля пишет: «Как-то, по словам Аристотеля, дивизия кораблей отчалила от острова Родос, и за борт было выброшено множество глиняной посуды. В горшках начал скапливаться ил, затем появились живые устрицы. Устрицы не смогли бы сами залезть в горшки или куда-либо еще – значит, они появились из ила»[96]. Теория самопроизвольного зарождения на протяжении веков оставалась популярной, но при этом безнадежно неверной. Факты, стоящие за внезапным появлением устриц и полихет, на деле куда банальнее. У этих животных, как и у кораллов, морских ежей, мидий и омаров, есть стадия личинки, на которой они плавают себе по открытому океану, пока не найдут местечко, где можно поселиться. Личинки эти микроскопически малы, существуют в огромных количествах (в одной капле морской воды их может быть до сотни) и нисколько не похожи на взрослых особей. Детеныш морского ежа напоминает скорее воланчик, чем игольницу, в которую потом превратится. Личинка H. elegans выглядит как гитарный медиатор с глазками, но точно не как длинный червь в трубке. С трудом верится, что это одно и то же животное.

В какой-то момент личинки обосновываются на одном месте. Юношеская страсть к путешествиям проходит, и их тела начинают принимать взрослую оседлую форму. Этот процесс – метаморфоз – является самым важным моментом их жизни. Когда-то ученые считали, что он происходит случайным образом – личинки селились где придется и, если место оказывалось пригодным для жизни, выживали. На самом деле они целеустремленны и разборчивы. Чтобы найти самые подходящие для метаморфоза места, они следуют по путеводным нитям в виде химических следов, изменений в температуре и даже звуков.

Вскоре Хэдфилд выяснил, что полихет привлекают бактерии, в особенности биопленки – склизкие пелены плотно прилегающих друг к другу бактерий, которые быстро появляются на поверхности погруженных под воду предметов. Отыскав биопленку, личинка подплывает к бактериям и прижимается к ним головкой. Через несколько минут она прикрепляется к ним, выделив из тыльной части вермишелину из слизи, и формирует вокруг себя прозрачный чехол. Прикрепившись попрочнее, она начинает меняться. Реснички, с помощью которых она перемещалась под водой, отпадают за ненадобностью. Ее тело удлиняется. Вокруг головки вырастает кольцо щупалец – ими она будет захватывать кусочки пищи. Начинает формироваться твердая трубка. Личинка стала взрослой полихетой, и больше ей никогда не придется двигаться. Это превращение полностью зависит от бактерий. Для H. elegans чистая, стерильная мензурка – словно Неверленд, страна вечной юности.

Этим червям нужны не просто какие-нибудь там микробы. Из всех обитающих в гавайских водах микробов Хэдфилд выделил лишь несколько бактерий, способных вызывать метаморфоз, причем выраженно это делала лишь одна. Язык сломаешь, пока произнесешь ее название – Pseudoalteromonas luteoviolacea. Хэдфилд, к счастью, называет ее просто P-luteo. В умении превращать личинок полихет во взрослых особей у P-luteo среди микробов равных нет. Без бактерий эти черви так и не смогли бы достичь зрелости[97].

И не только они. Личинки некоторых губок тоже оседают на поверхности и видоизменяются, повстречав бактерий. Как и мидии, морские желуди, асцидии и кораллы. И даже – прости, Аристотель – устрицы. Гидрактиния, родственница медуз и актиний, достигает зрелости, соприкоснувшись с бактериями, обитающими на раковинах раков-отшельников. В океанах полно детенышей животных, чей биологический цикл будет завершен лишь при контакте с бактериями – нередко именно с P-luteo[98].

А что произойдет, если эти микробы вдруг исчезнут? Вымрут ли вышеупомянутые животные, потеряв возможность достигать зрелости и размножаться? Перестанут ли появляться коралловые рифы – самые богатые экосистемы океанов, – если разведчики-бактерии больше не будут выбирать для них подходящие места? «Я вроде никогда раньше не заявлял ничего настолько грандиозного», – с присущей ученым осторожностью говорит Хэдфилд. И, к моему удивлению, добавляет: «Но ведь так и есть. Разумеется, не всем личинкам в океане нужен стимул в виде бактерии, да и большинство личинок мы еще не проверили. Но полихеты, кораллы, актинии, морские желуди, мшанки, губки… Можно продолжать сколько угодно. Во всех этих группах есть виды, для которых бактерии – это основа».

Опять же, зачем полагаться на бактерий? Возможно, микробы позволяют личинкам прочнее закрепиться на месте или производят молекулы, отпугивающие болезнетворных бактерий. Но Хэдфилд считает, что все гораздо проще. Наличие биопленки предоставляет личинкам важную информацию о том, что тут (1) твердая поверхность, (2) которая уже давно здесь находится, (3) не слишком токсична и (4) с достаточным количеством питательных веществ для микробов. Чем не поводы там поселиться! Логично будет спросить: а почему бы не полагаться на бактерий? А еще логичнее: кто вас вообще спрашивает? «Когда личинки первых морских животных были готовы оседать, чистых мест нигде не было, – вторит Хэдфилд Ролзу и Кинг. – Все вокруг было покрыто бактериями. Неудивительно, что различия в тех сообществах бактерий и стали первым ключом к заселению».

Хоанофлагелляты Кинг и полихеты Хэдфилда не только тонко настроены на присутствие микробов, но и кардинально ими изменены. Без бактерий дружелюбные хоаны навсегда остались бы одиночками, а личинки червей навсегда остались бы недоразвитыми. Эти примеры прекрасно показывают, насколько сильно микробы могут изменить тела животных или их родственников. И все же симбиозом в привычном нам значении эти отношения не являются. Полихеты не дают P-luteo поселиться у себя в организме и, насколько мы знаем, во взрослой форме никак с ними не взаимодействуют. Их отношения мимолетны. Они как туристы, что спрашивают прохожих, как куда-то пройти, и идут дальше. А вот другие животные формируют с микробами отношения более длительные и взаимозависимые.

Одним из таких существ является плоский червь Paracatenula. Это крошечное создание, обитающее по всему миру в донных осадках теплых океанских вод, доводит симбиоз до крайности. Половина его тела длиной в один сантиметр состоит из бактерий-симбионтов. Они ютятся в полости под названием трофосома, которая занимает до 90 % самого червя. Практически все, что находится за мозгом, – это или микробы, или их жилплощадь. Биолог Харальд Грубер-Фодика, изучающий плоских червей, описывает бактерий как двигатель и аккумулятор одновременно: они вырабатывают для червей энергию и запасают ее в виде жиров и соединений серы. Эти запасы и придают червю ярко-белый цвет. Они же питают самую необычную способность червя: Paracatenula – мастер регенерации[99]. Разрежьте его надвое – и обе половинки превратятся в полностью жизнеспособных животных. Задняя половинка даже отрастит себе голову и мозг. «Если их нарезать, получится десять червяков, – говорит Грубер-Фодика. – То же, наверное, происходит и в природных условиях. Они вырастают все длиннее и длиннее, один конец отделяется, и червей становится двое». Это умение полностью зависит от трофосомы, населяющих ее бактерий и запасенной ими энергии. Покуда в куске плоского червя достаточно симбионтов, из него может вырасти целое животное. Если симбионтов слишком мало, кусок погибнет. Это значит, что, вопреки очевидному, единственный неспособный к регенерации фрагмент плоского червя – это его голова, в которой нет бактерий. Хвост отрастит себе мозг, но мозг сам по себе не сможет заново вырастить хвост.

 

Партнерство Paracatenula с микробами типично для всего царства животных, включая нас с вами. Хоть у нас и отсутствуют чудесные способности плоских червей к исцелению, мы все же предоставляем микробам жилье в собственном теле и взаимодействуем с ними на протяжении всей жизни. В отличие от трубочных полихет Хэдфилда, чьи тела благодаря бактериям в окружающей среде перевоплощаются лишь однажды, наши тела непрерывно строятся и меняются обитающими в нас бактериями. Наши с ними отношения – это не разовая интрижка, а непрерывные разговоры по душам.

Мы уже знаем, что микробы влияют на развитие кишечника и других органов, однако, закончив с этим, они не станут отдыхать. Чтобы организм животного функционировал, нужно поработать. По словам Оливера Сакса, «нет ничего более важного для выживания и независимости организмов, будь то слоны или простейшие, чем поддержание неизменной внутренней среды»[100]. А для поддержания как раз и необходимы микробы. Они воздействуют на отложение жира. Они помогают восполнять слои кожи и стенок кишечника, заменяя поврежденные и отмирающие клетки новыми. Они обеспечивают неприкосновенность гематоэнцефалического барьера – сети плотно прилегающих друг к другу клеток, пропускающих из крови в мозг питательные вещества и мелкие молекулы, но закрывающих туда доступ более крупным частицам и живым клеткам. Они даже влияют на беспрестанную реконструкцию скелета, во время которой появляется новая кость, а старая рассасывается[101].

Однако лучше всего их постоянное воздействие заметно в иммунной системе – это клетки и молекулы, работающие вместе, чтобы защитить тело от инфекции и других угроз. Она запутана до неприличия. Представьте себе огромную машину Голдберга, состоящую из кажущегося бесконечным набора составляющих, которые друг друга контролируют, запускают и оповещают. Теперь представьте, что эту машину не доделали: каждая ее часть не закончена, неправильно подключена к другим, или этих частей меньше, чем нужно. Именно так выглядит иммунная система стерильного грызуна. Именно поэтому такие животные, как сказал Теодор Розбери, «крайне подвержены заражению, будучи неподготовленными к опасностям окружающего мира»[102].

Это говорит о том, что геном животного предоставляет не все, что нужно для развития зрелой иммунной системы. Ей требуется участие микробиома[103]. В сотнях научных статей о самых разных видах животных – о мышах, мухах цеце, рыбках данио-рерио – показано, что микробы определенным образом помогают формировать иммунную систему. Они воздействуют на создание целых классов иммунных клеток и на развитие органов, которые эти клетки производят и накапливают. Особенно они важны на первых этапах жизни, когда только что построенная машина-иммунитет приспосабливается к большому и злому миру. А когда она входит в рабочий ритм, микробы продолжают проверять, как она реагирует на угрозы[104].

Взять, например, воспаление – это защитная реакция, при которой иммунные клетки устремляются к месту ранения или заражения и приводят к опухлости, покраснению и повышению температуры. Оно необходимо для защиты тела от угроз, без него нас бы изрешетили инфекции. Однако оно становится проблемой, когда разносится по всему телу, слишком долго не проходит или появляется по малейшему поводу: это может привести к астме, артриту и другим воспалительным и аутоиммунным заболеваниям. Поэтому воспаление должно вызываться лишь тогда, когда надо, и при этом тщательно контролироваться. Его подавление столь же важно, как и инициирование. Микробы занимаются и тем и другим. Одни виды стимулируют производство воинственных воспалительных клеток, а другие отвечают за мирные и кроткие противовоспалительные клетки[105]. Работая вместе, они позволяют нам реагировать на угрозы подобающе. Без них баланс исчезает – потому-то стерильные мыши и склонны как к инфекциям, так и к аутоиммунным заболеваниям: они не способны вызвать уместную иммунную реакцию, когда она так необходима, а в более спокойные времена не могут отразить неуместную.

Давайте на секунду остановимся и задумаемся, насколько это необычно. Привычный нам взгляд на иммунитет полон боевых метафор и воинственных словечек. Мы считаем его оборонительной силой, которая отличает свое (клетки нашего тела) от чужого (микробы и все остальное) и уничтожает последнее. Но сейчас мы понимаем, что микробы изначально формируют его и настраивают!

Рассмотрим всего один пример – широко распространенную кишечную бактерию Bacteroides fragilis, или B-frag. В 2002 году Саркис Мазманян установил, что именно этот микроб может исправить некоторые сложности с иммунитетом у стерильных мышей. Если точнее, то его присутствие восстанавливает нормальное количество Т-хелперов, важнейших иммунных клеток, которые объединяют остальных и управляют ими[106]. Мазманяну даже не нужен был весь микроб. Он выяснил, что всего одна сахарная молекула в его стенке – полисахарид А (PSA) – сама по себе способствует росту количества Т-хелперов. Так в первый раз было доказано, что один-единственный микроб… нет, одна-единственная микробная молекула способна исправить определенную иммунную проблему. Позже научная группа Мазманяна выяснила, что PSA может препятствовать появлению воспалительных болезней – например, поражающего кишечник колита и поражающего нервные клетки рассеянного склероза – и даже лечить их, по крайней мере у мышей[107]. Эти болезни возникают при слишком острой иммунной реакции, а PSA несет здоровье через умиротворение.

Однако вспомните, что PSA является бактериальной молекулой – если следовать здравому смыслу, именно ее иммунная система должна считать угрозой. По идее, PSA должен провоцировать воспаление. На деле он, наоборот, его подавляет и успокаивает иммунную систему. Мазманян называет его симбиотическим фактором – химическим посланием от микроба к хозяину, в котором говорится: «Я иду с миром»[108]. Это свидетельствует о том, что иммунная система не приучена с рождения различать безобидных симбионтов и вредных патогенов. В данном случае ей помогает именно микроб.

Но как же при таком раскладе нам считать иммунную систему воинственным войском, помешанным на уничтожении микробов? Разумеется, все гораздо заковыристее. Иммунитет может вскипеть, разозлившись на собственное тело, – отсюда и появляются аутоиммунные болезни, такие как диабет первого типа и рассеянный склероз. А может тихонько булькать себе, не обращая внимания на бессчетное количество местных микробов, таких как B-frag. Думаю, иммунную систему будет лучше сравнить с командой лесничих в заповеднике – и та и другая управляют экосистемой. Их задача – держать под тщательным контролем количество обитающих в экосистеме видов и избавляться от вторгшихся захватчиков.

Но вот в чем изюминка: обитающие в нашем парке существа сами наняли лесничих. Они приучили своих защитников заботиться об одних видах и прогонять другие. И они постоянно выделяют вещества, такие как PSA, которые определяют, насколько лесничие бдительны и проворны. Иммунитет – это не просто средство для контроля микробов. Он и сам контролируется микробами, по крайней мере отчасти. Это еще один способ, с помощью которого наши множества нас берегут.

Если составить список всех видов в микробиоме, можно будет узнать, кто там живет. Если составить список всех генов этих микробов, можно будет выяснить, на что они способны[109]. А вот если составить список всех химических веществ, которые производят микробы, мы сможем сказать, чем эти виды на самом деле занимаются. Какие-то из этих веществ мы уже повстречали – например, симбиотический фактор PSA и две манипулирующие моллюсками молекулы MAMP, которые выявила Макфолл-Най. Существуют еще сотни тысяч подобных молекул – мы только приступили к изучению их функций[110]. С помощью этих веществ животные общаются со своими симбионтами. Сейчас многие ученые пытаются подслушать, о чем они говорят, – и не только ученые. Молекулы, которые производят микробы, могут распространяться и вне организмов хозяев, доставляя сообщения по воздуху. Такие уведомления можно учуять в африканских саваннах.

Пятнистые гиены – самые общительные крупные хищники во всей Африке. В одном львином прайде может жить до дюжины особей, а в клане гиен – от 40 до 80. Они не находятся все в одном месте одновременно: на протяжении дня формируются и распадаются небольшие подгруппы. Потому-то гиен так интересно изучать биологам во время полевых исследований. «Можно наблюдать за львами в их естественной среде, но они все время лежат на месте, а можно несколько лет изучать волков и только находить помет или слышать вой, – рассказывает Кевин Тейс, поклонник гиен. – А вот гиены… у них и приветствия, и повторные принятия в клан, и сигналы лидерства и подчинения… Можно наблюдать за тем, как молодняк пытается выяснить свое положение в клане, или за тем, как пришедшие в клан самцы устраивают перекличку, чтобы понять, кто там есть. Их общественная жизнь гораздо более многогранна».

С этой многогранностью они справляются с помощью широкого ассортимента сигналов, в том числе химических. Пятнистая гиена расставляет задние лапы над стеблем высокой травы и выпячивает расположенную сзади пахучую железу, а затем трется ей о стебель, оставляя на нем тонкий слой пасты. Цвет может быть разным, от черного до оранжевого, а консистенция – от плотной до жидкой. А запах? «По-моему, она пахнет как перегной, но некоторые считают, что запах скорее напоминает чеддер или дешевое мыло», – делится Тейс.

Он уже несколько лет изучал выделения гиен, когда коллега вдруг спросил его, участвуют ли в создании запаха бактерии. Тейс вошел в ступор. Потом он узнал, что другие ученые выдвинули эту же теорию в 1970-х, утверждая, что в пахучих железах млекопитающих обитают бактерии, ферментирующие жиры и белки для производства воздушных молекул с сильным запахом. Различия среди этих микробов как раз могут объяснить, почему разным видам присущ свой характерный запах, – помните пахнущего попкорном бинтуронга из зоопарка Сан-Диего?[111] Они же могут стать своеобразным бейджиком животного и разглашать информацию о его статусе или состоянии здоровья. А когда особи играют вместе, борются и спариваются, есть вероятность, что они обменяются микробами, что придаст им уникальный запах всей группы.

Эта гипотеза казалась логичной, но подтвердить ее долгое время было нелегко. Несколько десятилетий спустя у Тейса в распоряжении оказались последние методологические наработки генетики, и таких сложностей не возникло. За время работы в Кении он собрал образцы пасты из желез 73 находящихся под наркозом гиен. Секвенировав ДНК живущих там микробов, он открыл больше типов бактерий, чем все предыдущие исследователи, вместе взятые. Он же выяснил, что эти бактерии и производимые ими вещества различаются у пятнистых гиен и полосатых, у гиен из разных кланов, у самок и самцов, а также у способных к зачатию и бесплодных[112]. На основании этих различий он заключил, что паста была своего рода химическим граффити, рассказывающим, кто художник и к какому виду он принадлежит, сколько ему лет и готов ли он к спариванию. Маркируя стебли травы своими пахучими микробами, гиены оставляют свою подпись по всей саванне.

Однако гипотеза пока так и остается гипотезой. «Нужно попробовать управлять микробиомом пахучих желез, чтобы узнать, изменятся ли типы запаха, – рассказывает Тейс. – Потом нужно будет доказать, что гиены замечают изменения в запахе и реагируют на них». Другие ученые тем временем нашли нечто подобное в пахучих железах и моче других млекопитающих, включая слонов, сурикатов, барсуков, летучих мышей и просто мышей. Запах старого суриката отличается от душка детеныша. У слона-самца амбре совсем не такое, как у самки.

И наконец, мы. Подмышка человека во многом похожа на пахучую железу гиены – тоже теплая, влажная и с кучей бактерий. Каждый вид создает свой запах. Corynebacterium превращает пот в нечто с запахом лука, а тестостерон – в нечто с запахом ванили или мочи либо вообще без запаха, зависит от генов нюхающего. Несут ли эти запахи полезные сигналы? Видимо, да! Микробиом подмышек на удивление устойчив, как и наши соответствующие запахи. Все люди воняют по-своему – в одной серии экспериментов добровольцы смогли узнать людей по запаху их футболок, умудрившись даже различить однояйцевых близнецов. Возможно, мы, как и гиены, способны получать информацию друг о друге, лишь учуяв запах сообщений, посланных нам микробами. И речь не только о млекопитающих. Кишечные бактерии пустынной саранчи производят часть агрегационного феромона, который побуждает этих одиночных насекомых собраться в затмевающий небо рой. Кишечные бактерии рыжих тараканов отвечают за их отвратительную привычку собираться вокруг фекалий друг друга. А клопы-краевики Thasus neocalifornicus полагаются на симбионтов для создания феромона тревоги, с помощью которого они предупреждают друг друга об опасности[113].

89Что ж, вынуждены и мы. Притом что в русском языке под словом «хоаны» обычно подразумеваются внутренние носовые отверстия в черепе позвоночных животных. – Прим. ред.
90Обычно бактерии одноклеточные, но это же биология, тут всегда найдутся исключения. Myxococcus xanthus при определенных условиях образуют хищные колонии, состоящие из миллионов клеток, которые двигаются, развиваются и охотятся как единый организм.
91Alegado, King, 2014.
92Великий немецкий биолог Эрнст Геккель считал, что первые животные на Земле представляли собой полые сферы, которые поедали бактерий. Эти гипотетические колонии он окрестил Blastaea и, по своему обыкновению, решил их зарисовать. Его набросок во многом напоминает розетку хоанофлагеллят, которую нарисовал сын Кинг.
93Имя Algoriphagus machipongonensis означает «холодный едок из Мачипонго» (Alegado et al., 2012).
94Недавно научная группа Николь Кинг выяснила, что и половую жизнь хоанофлагеллят тоже стимулируют бактерии. В экспериментах участвовали уже знакомые нам бактерии V. fischeri: оказалось, они выделяют фермент, под воздействием которого хоанофлагелляты S. rosetta начинают формировать стайки и сливаться мембранами и ядрами, в результате чего происходит рекомбинация генетического материала. Это первая демонстрация возможного влияния бактерий на размножение эукариот (Woznica et al., 2017). – Прим. ред.
95Hadfield, 2011.
96Leroi, 2014, с. 27.
97Хэдфилду понадобилось почти десять лет, чтобы выяснить, как именно бактерии вызывают изменения в организме червя. Ответ, как выяснилось, на удивление жестокий. Хэдфилд вместе с Ником Сикума в Калифорнийском технологическом институте выяснил, что P-luteo вырабатывает белки под названием бактериоцины, с помощью которых воюет с другими микробами (Shikuma et al., 2014). Эти белки протыкают оболочки других клеток, что приводит к их гибели. Вместе они объединяются в крупное куполообразное скопление, выставляя наружу опасные острия. У P-luteo такими скоплениями вся биопленка усеяна, будто минами. Хэдфилд полагает, что при прикосновении личинки червя к такой «мине» одна из клеток организма – бац! – продырявливается насквозь. Возможно, этого оказывается достаточно, чтобы вызвать нервный сигнал, говорящий личинке, что пора бы уже вырасти.
98Hadfield, 2011; Sneed et al., 2014; Wahl et al., 2012.
99Gruber-Vodicka et al., 2011; результаты исследования регенерации еще не опубликованы.
100Sacks, 2015.
101В нескольких исследованиях показано, что микробы влияют на жировые отложения (Bäckhed et al., 2004), гематоэнцефалический барьер (Braniste et al., 2014) и костную ткань (Sjögren et al., 2012). Другие исследования, относящиеся к этому вопросу, рассмотрели Fraune, Bosch, 2010.
102Rosebury, 1969, с. 67.
103И не просто какого-нибудь там микробиома. Деннис Каспер выяснил, что у стерильной мыши разовьется мощная иммунная система, лишь если в ее организм поступят микробы из организма другой здоровой мыши, а вот человеческий микробиом или даже крысиный не подойдут (Chang et al., 2012). Значит, определенные сообщества микробов коэволюционировали вместе с хозяевами, чтобы настроить их иммунитет оптимальным способом. Здесь даже вирусы замешаны. Кен Кэдуэлл заразил стерильных мышей штаммом норовируса, родственного тому, который нередко проклинают пассажиры круизных лайнеров, свешиваясь за борт. Грызуны начали вырабатывать большее количество белых кровяных клеток различных типов. Вирус вел себя словно богатый бактериями микробиом (Kernbauer et al., 2014).
104О связи иммунитета и микробиома подробно рассказано в этих статьях: Belkaid, Hand, 2014; Hooper et al., 2012; Li, Mazmanian, 2010; Selosse et al., 2014. О важности микробов на раннем этапе жизни: Olszak et al., 2012.
105Дэн Литтман и Кенья Хонда выяснили, что сегментированные нитчатые бактерии могут спровоцировать реакцию иммунных клеток, участвующих в воспалении (Ivanov et al., 2009). Хонда также показал, что бактерии Clostridia стимулируют противовоспалительные клетки (Atarashi et al., 2011).
106Чтобы понять, насколько это на самом деле важно, вспомните о ВИЧ. Его боятся именно потому, что он уничтожает Т-хелперы и в результате иммунная система человека перестает реагировать даже на слабых патогенов.
107Первое исследование Мазманяна, посвященное B-frag и полисахаридам А: Mazmanian et al., 2005. Бывшая сотрудница лаборатории Джун Раунд принимала участие в более поздних исследованиях: Mazmanian et al., 2008; Round, Mazmanian, 2010.
108B-frag обитает не в каждом кишечнике. К счастью, она – лишь одна из миллионов бактерий с похожими качествами. Венди Гарретт выяснила, что большинство из них производят одни и те же вещества – например, короткоцепочечные жирные кислоты, которые стимулируют ту часть иммунной системы, что отвечает за подавление воспалений (Smith et al., 2013b).
109Теоретически. На самом деле мы до сих пор не знаем, за что отвечает большая часть этих генов, но рано или поздно обязательно узнаем.
110Важность микробных продуктов метаболизма описывают Dorrenstein et al., 2014, Nicholson et al., 2012, Sharon et al., 2014.
111Моча леопарда тоже пахнет попкорном. Когда будете кататься на джипе по саванне в Африке, имейте в виду: манящий аромат жареной кукурузы ничего хорошего не сулит.
112Theis et al., 2013.
113Исследование пахучих желез: Archie, Theis, 2011; Ezenwa, Williams, 2014. Запах однояйцевых близнецов: Roberts et al., 2005; исследования саранчи, тараканов и клопов-краевиков: Dillon et al., 2000; Wada-Katsumara et al.; 2015, Becerra et al., 2015.
1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23 
Рейтинг@Mail.ru