ЗАДАЧА
Сколько есть положений на правильно идущих часах, когда часовая и минутная стрелки совмещаются?
РЕШЕНИЕ
Мы можем воспользоваться уравнениями, выведенными при решении предыдущей задачи: ведь если часовая и минутная стрелки совместились, то их можно обменять местами – от этого ничего не изменится. При этом обе стрелки прошли одинаковое число делений от цифры 12, т. е. х = у. Таким образом, из рассуждений, относящихся к предыдущей задаче, мы выводим уравнение
где m — целое число от 0 до 11. Из этого уравнения находим:
Из двенадцати возможных значений для т (от нуля до 11) мы получаем не 12, а только 11 различных положений стрелок, так как при m = 11 мы находим x = 60, т. е. обе стрелки прошли 60 делений и находятся на цифре 12; это же получается при m = 0.
Каждый из вас, несомненно, встречался с «фокусами» по отгадыванию чисел. Фокусник обычно предлагает выполнить действия следующего характера: задумай число, прибавь 2, умножь на 3, отними 5, отними задуманное число и т. д. – всего пяток, а то и десяток действий. Затем фокусник спрашивает, что у вас получилось в результате, и, получив ответ, мгновенно сообщает задуманное вами число.
Секрет «фокуса», разумеется, очень прост, и в основе его лежат все те же уравнения.
Пусть, например, фокусник предложил вам выполнить программу действий, указанную в левой колонке следующей таблицы:
Затем фокусник просит вас сообщить окончательный результат и, получив его, моментально называет задуманное число. Как он это делает?
Чтобы понять это, достаточно обратиться к правой колонке таблицы, где указания фокусника переведены на язык алгебры. Из этой колонки видно, что если вы задумали какое-то число х, то после всех действий у вас должно получиться 4х + 1. Зная это, нетрудно «отгадать» задуманное число.
Пусть, например, вы сообщили фокуснику, что получилось 33. Тогда фокусник быстро решает в уме уравнение 4x + 1 = 33 и находит: х = 8. Иными словами, от окончательного результата надо отнять единицу (33 – 1 = 32) и затем полученное число разделить на 4 (32: 4 = 8); это и дает задуманное число (8). Если же у вас получилось 25, то фокусник в уме проделывает действия 25 – 1 = 24, 24: 4 = 6 и сообщает вам, что вы задумали 6.
Как видите, все очень просто: фокусник заранее знает, что надо сделать с результатом, чтобы получить задуманное число.
Поняв это, вы можете еще более удивить и озадачить ваших приятелей, предложив им самим, по своему усмотрению, выбрать характер действий над задуманным числом. Вы предлагаете приятелю задумать число и производить в любом порядке действия следующего характера: прибавлять или отнимать известное число (скажем: прибавить 2, отнять 5 и т. д.), умножать[1] на известное число (на 2, на 3 и т. п.), прибавлять или отнимать задуманное число. Ваш приятель нагромождает, чтобы запутать вас, ряд действий. Например, он задумывает число 5 (этого он вам не сообщает) и, выполняя действия, говорит:
– Я задумал число, умножил его на 2, прибавил к результату 3, затем прибавил задуманное число; теперь я прибавил 1, умножил на 2, отнял задуманное число, отнял 3, еще отнял задуманное число, отнял 2. Наконец, я умножил результат на 2 и прибавил 3.
Решив, что уже совершенно вас запутал, он с торжествующим видом сообщает вам:
– Получилось 49.
К его изумлению вы немедленно сообщаете ему, что он задумал число 5.
Как вы это делаете? Теперь это уже достаточно ясно. Когда ваш приятель сообщает вам о действиях, которые он выполняет над задуманным числом, вы одновременно действуете в уме с неизвестным х. Он вам говорит: «Я задумал число…», а вы про себя твердите: «значит, у нас есть х». Он говорит: «…умножил его на 2…» (и он в самом деле производит умножение чисел), а вы про себя продолжаете: «теперь 2x». Он говорит: «…прибавил к результату 3…», и вы немедленно следите: 2x + 3, и т. д. Когда он «запутал» вас окончательно и выполнил все те действия, которые перечислены выше, у вас получилось то, что указано в следующей таблице (левая колонка содержит то, что вслух говорит ваш приятель, а правая – те действия, которые вы выполняете в уме):
В конце концов вы про себя подумали: окончательный результат 8x + 9. Теперь он говорит: «У меня получилось 49». А у вас готово уравнение: 8x + 9 = 49. Решить его – пара пустяков, и вы немедленно сообщаете ему, что он задумал число 5.
Фокус этот особенно эффектен потому, что не вы предлагаете те операции, которые надо произвести над задуманным числом, а сам товарищ ваш «изобретает» их.
Есть, правда, один случай, когда фокус не удается. Если, например, после ряда операций вы (считая про себя) получили x + 14, а затем ваш товарищ говорит: «…теперь я отнял задуманное число; у меня получилось 14», то вы следите за ним: (x + 14) – х = 14 – в самом деле получилось 14, но никакого уравнения нет и отгадать задуманное число вы не в состоянии. Что же в таком случае делать? Поступайте так: как только у вас получается результат, не содержащий неизвестного х, вы прерываете товарища словами: «Стоп! Теперь я могу, ничего не спрашивая, сказать, сколько у тебя получилось: у тебя 14». Это уже совсем озадачит вашего приятеля – ведь он совсем ничего вам не говорил! И, хотя вы так и не узнали задуманное число, фокус получился на славу!
Вот пример (по-прежнему в левой колонке стоит то, что говорит ваш приятель):
В тот момент, когда у вас получилось число 12, т. е. выражение, не содержащее больше неизвестного х, вы и прерываете товарища, сообщив ему, что теперь у него получилось 12.
Немного поупражнявшись, вы легко сможете показывать своим приятелям такие «фокусы».
ЗАДАЧА
Вот задача, которая может показаться совершенно абсурдной:
Чему равно 84, если 8 · 8 = 54?
Этот странный вопрос далеко не лишен смысла, и задача может быть решена с помощью уравнений.
Попробуйте расшифровать ее.
РЕШЕНИЕ
Вы догадались, вероятно, что числа, входящие в задачу, написаны не по десятичной системе, – иначе вопрос «чему равно 84» был бы нелепым. Пусть основание неизвестной системы счисления есть х. Число «84» означает тогда 8 единиц второго разряда и 4 единицы первого, т. е.
«84» = 8х + 4.
Число «54» означает 5х + 4.
Имеем уравнение 8 · 8 = 5х + 4, т. е. в десятичной системе 64 = 5x + 4, откуда x = 12.
Числа написаны по двенадцатеричной системе, и «84» = 8 · 12 + 4 = 100. Значит, если 8 · 8 = «54», то «84» = 100.
Подобным же образом решается и другая задача в этом роде:
Чему равно 100, когда 5 · 6 = 33?
Ответ: 81 (девятеричная система счисления).
Если вы сомневаетесь в том, что уравнение бывает иной раз предусмотрительнее нас самих, решите следующую задачу.
Отцу 32 года, сыну 5 лет. Через сколько лет отец будет в 10 раз старше сына?
РЕШЕНИЕ
Обозначим искомый срок через х. Спустя х лет отцу будет 32 + х лет, сыну 5 + х. И так как отец должен тогда быть в 10 раз старше сына, то имеем уравнение
32 + х = 10 (5 + х).
Решив его, получаем х = –2.
«Через минус 2 года» означает «два года назад». Когда мы составляли уравнение, мы не подумали о том, что возраст отца никогда в будущем не окажется в 10 раз превосходящим возраст сына – такое соотношение могло быть только в прошлом. Уравнение оказалось вдумчивее нас и напомнило о сделанном упущении.
При решении уравнений мы наталкиваемся иногда на ответы, которые могут поставить в тупик малоопытного математика. Приведем несколько примеров.
I. Найти двузначное число, обладающее следующими свойствами. Цифра десятков на 4 меньше цифры единиц. Если из числа, записанного теми же цифрами, но в обратном порядке, вычесть искомое число, то получится 27.
Обозначив цифру десятков через х, а цифру единиц – через у, мы легко составим систему уравнений для этой задачи:
Подставив во второе уравнение значение х из первого, найдем:
а после преобразований:
36 = 27.
У нас не определились значения неизвестных, зато мы узнали, что 36 = 27… Что это значит?
Это означает лишь, что двузначного числа, удовлетворяющего поставленным условиям, не существует и что составленные уравнения противоречат одно другому.
В самом деле: умножив обе части первого уравнения на 9, мы найдем из него:
9y – 9x = 36,
а из второго (после раскрытия скобок и приведения подобных членов):
9у – 9x = 27.
Одна и та же величина 9у – 9х согласно первому уравнению равна 36, а согласно второму 27. Это безусловно невозможно, так как 36 ≠ 27.
Подобное же недоразумение ожидает решающего следующую систему уравнений:
Разделив первое уравнение на второе, получаем:
ху = 2,
а сопоставляя полученное уравнение со вторым, видим, что
т. е. 4 = 2. Чисел, удовлетворяющих этой системе, не существует. (Системы уравнений, которые, подобно сейчас рассмотренным, не имеют решений, называются несовместными.)
II. С иного рода неожиданностью встретимся мы, если несколько изменим условие предыдущей задачи. Именно будем считать, что цифра десятков не на 4, а на 3 меньше, чем цифра единиц, а в остальном оставим условие задачи тем же. Что это за число?
Составляем уравнение. Если цифру десятков обозначим через х, то число единиц выразится через х + 3. Переводя задачу на язык алгебры, получим:
Сделав упрощения, приходим к равенству 27 = 27.
Это равенство неоспоримо верно, но оно ничего не говорит нам о значении х. Значит ли это, что чисел, удовлетворяющих требованию задачи, не существует?
Напротив, это означает, что составленное нами уравнение есть тождество, т. е. что оно верно при любом значении неизвестного х. Действительно, легко убедиться в том, что указанным в задаче свойством обладает каждое двузначное число, у которого цифра единиц на 3 больше цифры десятков:
14 + 27 = 41,
47 + 27 = 74,
25 + 27 = 52,
58 + 27 = 85,
36 + 27 = 63,
69 + 27 = 96.
III. Найти трехзначное число, обладающее следующими свойствами:
1) цифра десятков 7;
2) цифра сотен на 4 меньше цифры единиц;
3) если цифры этого числа разместить в обратном порядке, то новое число будет на 396 больше искомого.
Составим уравнение, обозначив цифру единиц через х:
100x + 70 + x – 4 – [100(x – 4) + 70 + x] = 396.
Уравнение это после упрощений приводит к равенству
396 = 396.
Читатели уже знают, как надо толковать подобный результат. Он означает, что каждое трехзначное число, в котором первая цифра на 4 меньше третьей[2], увеличивается на 396, если цифры поставить в обратном порядке.
До сих пор мы рассматривали задачи, имеющие более или менее искусственный, книжный характер; их назначение – помочь приобрести навык в составлении и решении уравнений. Теперь, вооруженные теоретически, займемся несколькими примерами задач практических – из области производства, обихода, военного дела, спорта.