bannerbannerbanner
Объясняя мир

Стивен Вайнберг
Объясняя мир

Полная версия

Тем не менее Аристарх сделал один важный качественный вывод: Солнце значительно больше Земли. Подчеркивая этот факт, Аристарх рассчитал, что объем Солнца как минимум в (361/60)³ раз (около 218 раз) больше объема Земли. Конечно, мы знаем теперь, что разница гораздо значительнее.

И Архимед, и Плутарх оставили интригующие свидетельства того, что Аристарх, посчитав, что Солнце огромно, решил, что не Солнце обращается вокруг Земли, а Земля вокруг Солнца. Как пишет Архимед в своем «Псаммите»{89}, Аристарх не только сделал вывод, что Земля обращается вокруг Солнца, но и что размер земной орбиты ничтожно мал по сравнению с расстоянием до неподвижных звезд. Похоже, что Аристарх столкнулся с проблемой, которая появляется при рассмотрении любой теории движения Земли. Когда мы, например, вертимся на карусели[6], окрестные наземные предметы с нашей точки зрения двигаются то в одну сторону, то в другую. Точно так же и звезды должны двигаться то вперед, то назад по мере того, как мы их наблюдаем в течение года с движущейся Земли. По всей видимости, Аристотель понимал это, когда оставил замечание, что если бы Земля двигалась, то «… должны происходить отклонения и попятные движения неподвижных звезд. Однако этого не наблюдается: одни и те же звезды всегда восходят и заходят в одних и тех же местах Земли»{90}. Точнее говоря, если Земля обращается вокруг Солнца, то каждая звезда должна описывать в небе замкнутую кривую, размер которой зависит от отношения диаметра орбиты Земли вокруг Солнца к расстоянию до этой звезды.

Так почему, если Земля обращается вокруг Солнца, астрономы древности не наблюдали этого перемещения звезд, известного как годичный параллакс? Чтобы параллакс оставался слишком маленьким для возможности его пронаблюдать, было необходимо предположить, что звезды находятся на очень больших расстояниях. К сожалению, в «Псаммите» Архимед ни разу явно не говорит о параллаксе, и мы не знаем, использовал ли кто-либо в древности этот аргумент для того, чтобы оценить минимально возможное расстояние до звезд.

Аристотель приводил и другие аргументы против гипотезы движущейся Земли. Некоторые опирались на теорию о том, что естественное движение направлено в центр мироздания, как описывалось в главе 3, но другие были основаны на наблюдательных фактах. Аристотель говорил, что если Земля находится в движении, то тела, подброшенные вертикально вверх, отстанут от двигающейся Земли и должны будут упасть не в то же самое место, откуда их подбросили. Вместо этого, как он отмечает, «… тяжести, силой бросаемые вверх, падают снова на то же место отвесно, даже если сила забросит их на бесконечно большое расстояние»{91}. Этот аргумент повторялся разными мыслителями много раз, например, Клавдием Птолемеем (знакомым нам по главе 4) около 150 г., затем Жаном Буриданом в Средние века, до тех пор, пока (как мы увидим в главе 10) настоящий ответ на него не был дан Николаем Оремом.

Судить о том, как широко была распространена идея движущейся Земли в античности, было бы можно, если бы сохранилось хорошее описание древнего планетария, механической модели Солнечной системы{92}. Цицерон в диалоге «О государстве» пересказывает разговор, имеющий предметом такой планетарий, состоявшийся в 129 г. до н. э., за двадцать три года до рождения самого Цицерона. В нем Луцию Фурию Филу принадлежат слова о механическом планетарии, созданном Архимедом, который был взят завоевателем Марцеллом в качестве трофея во время падения Сиракуз и который он якобы видел в свое время в доме внука того Марцелла. Трудно судить по информации из третьих рук о том, как именно работал этот механизм (вдобавок в этой части диалога «О государстве» не хватает некоторых страниц), но в одном месте у Цицерона Фил говорит, что это была «такая сфера, на которой были бы представлены движения Солнца, Луны и пяти звезд, называемых странствующими [планетами]»{93}, что дает основания думать, что в конструкции планетария Солнце двигалось, а Земля покоилась.

Как я расскажу в главе 8, задолго до Аристарха пифагорейцы считали, что и Земля, и Солнце обращаются вокруг центрального огня. Они ничем не подтверждали свое мнение, но почему-то их рассуждения вспоминались чаще, чем почти забытые идеи Аристарха. Лишь об одном древнегреческом астрономе известно, что он воспринял гелиоцентризм Аристарха: это был таинственный Селевк из Селевкии, живший в середине II в. до н. э. Во времена Коперника и Галилея астрономы и представители Церкви, рассуждающие о Земле, находящейся в движении, называли ее пифагорейской, а не аристарховой. Приехав на остров Самос в 2005 г., я обратил внимание, что там полно баров и ресторанов, названных в честь Пифагора, но нет ни одного, названного в память об Аристархе Самосском.

Легко понять, почему идея движения Земли не закрепилась в античности. Мы не ощущаем этого движения, и вплоть до XIV в. никто не понимал, что нет причины, по которой мы должны были бы чувствовать его. К тому же ни Архимед, ни кто-либо другой не оставили свидетельств того, что Аристарх показывал, как должны выглядеть движения планет с Земли, которая движется сама.

Измерение расстояния между Землей и Луной было повторено со значительно лучшей точностью Гиппархом, которого принято считать лучшим астрономом-наблюдателем Древнего мира{94}. Гиппарх занимался астрономическими наблюдениями в Александрии с 161 по 146 г. до н. э., а затем продолжал их вплоть до 127 г. до н. э., вероятно, на острове Родос. Почти все им написанное было утрачено, и мы знаем о его вкладе в астрономию в основном по свидетельствам Клавдия Птолемея, жившего на три столетия позднее. Один из расчетов Гиппарха базировался на наблюдении полного солнечного затмения, которое, как мы теперь знаем, произошло 14 марта 129 г. до н. э. Во время этого затмения солнечный диск был полностью закрыт Луной в Александрии, но лишь на 4/5 в районе пролива Геллеспонт (сейчас известного как Дарданеллы – этот пролив разделяет Европу и Азию). Поскольку видимый диаметр дисков Луны и Солнца, как это очевидно во время солнечного затмения, почти одинаков и, согласно измерениям Гиппарха, составляет около 33 минут дуги, или 0,55°, он заключил, что разность углов между направлениями на Луну из района Геллеспонта и Александрии есть 1/5 от 0,55°, или 0,11°. Из наблюдений за Солнцем Гиппарх знал широты Геллеспонта и Александрии, также он знал положение Луны на небе в обоих пунктах во время затмения, исходя из чего смог рассчитать расстояние до Луны, выразив его в единицах радиуса Земли. Зная также величину изменений видимого размера Луны на протяжении лунного месяца, Гиппарх сделал вывод, что расстояние от Земли до Луны меняется в пределах от 71 до 83 радиусов Земли. Средняя величина, которую мы знаем сейчас, составляет 60 радиусов Земли.

 

Я должен прервать рассказ, чтобы упомянуть другое великое достижение Гиппарха, пусть даже оно и не относится напрямую к измерениям размеров и расстояний. Гиппарх создал звездный каталог, в котором было более 800 звезд с указанием их небесных координат. Справедливо, что самый лучший современный звездный каталог, содержащий координаты более чем 118 000 звезд, составлен по материалам наблюдений искусственного спутника Земли, названного в честь Гиппарха.

Измерения Гиппархом положений звезд помогли ему совершить открытие примечательного явления, которое не было понято, пока не нашло объяснения в трудах Ньютона. Чтобы объяснить суть открытия, необходимо сказать несколько слов о том, как описываются небесные координаты астрономических объектов. Каталог Гиппарха не сохранился до нашего времени, и мы не знаем, как именно он описывал эти координаты. Со времен владычества Рима было известно два возможных способа это сделать. Один метод, который использовал Птолемей при создании своего каталога{95}, заключается в изображении неподвижных звезд как точек на сфере, экватор которой совпадает с эклиптикой – линией, по которой пролегает видимый годичный путь Солнца среди звезд. Небесные долгота и широта определяют расположение звезд на этой сфере так же, как обыкновенные долгота и широта определяют положение точек на поверхности Земли{96}. Согласно другому методу, который, возможно, был использован Гиппархом{97}, точки также наносятся на координатную сферу, но ее полярная ось совпадает с осью Земли, а не с перпендикуляром к плоскости эклиптики. Северный полюс такой сферы есть северный полюс мира, вокруг которого обращаются звезды. Координаты на этой сфере называются не долготой и широтой, а склонением и прямым восхождением.

По словам Птолемея{98}, измерения Гиппарха были точны до такой степени, что Гиппарх обратил внимание на изменение, которое произошло с небесной долготой (или прямым восхождением) звезды Спики по сравнению со значением, которое было зарегистрировано задолго до него астрономом Тимохарисом в Александрии: разница составила 2°. Но это не Спика переместилась в другую точку относительно других звезд, а то место на небесной сфере, где находится Солнце во время осеннего равноденствия, – именно от этой точки отмеряется небесная долгота.

Трудно сказать в точности, сколько времени прошло между двумя измерениями. Тимохарис родился около 320 г. до н. э., примерно за 130 лет до Гиппарха, но есть сведения, что он умер молодым около 280 г. до н. э., на 160 лет раньше Гиппарха. Если мы примем, что их наблюдения Спики разделяло примерно 150 лет, то результаты наблюдений показывают, что положение Солнца во время осеннего равноденствия смещается на один градус за 75 лет{99}. Смещаясь с этой скоростью, точка равноденствия совершает полный круг в 360° по зодиаку за промежуток времени, равный произведению 360 и 75, то есть за 27 000 лет.

Сейчас мы знаем, что прецессия точек равноденствия вызывается смещением земной оси (похожей на медленные «блуждающие» оси быстро крутящегося волчка) вокруг перпендикуляра к плоскости орбиты Земли, в то время как угол между этим направлением и осью Земли остается постоянным и приблизительно равен 23,5°. Равноденствия – это дни, когда отрезок прямой между Землей и Солнцем перпендикулярен земной оси, поэтому изменение направления земной оси заставляет точки равноденствия прецессировать. В главе 14 мы узнаем, что причина этого вращения была впервые объяснена Исааком Ньютоном как результат действия сил тяготения со стороны Солнца и Луны на экваториальное вздутие Земли. В действительности поворот земной оси на полные 360° занимает 25 727 лет. Замечательно, насколько точно сумел Гиппарх предсказать длительность процесса, происходящего в течение такого большого промежутка времени. Между прочим, именно из-за прецессии точек равноденствия древним мореходам приходилось определять направление на север приближенно по созвездиям вблизи северного полюса мира, а не по привычной нам Полярной звезде. Полярная осталась на том же месте среди звезд, но в древности ось Земли была направлена вовсе не на нее, и в будущем северный полюс мира снова перестанет совпадать с Полярной звездой.

Возвращаясь к задачам измерения расстояний до небесных тел, надо отметить, что и Аристарх, и Гиппарх давали оценки расстояния до Луны и Солнца, выраженные в относительных единицах, привязанных к размеру Земли. Сам этот размер был измерен спустя несколько десятков лет после работ Гиппарха другим ученым, Эратосфеном. Он родился в 273 г. до н. э. в Кирене, греческом городе на Средиземноморском побережье нынешней Ливии, который был основан около 630 г. до н. э. и ко времени рождения Эратосфена стал частью царства Птолемеев. Он учился в Афинах, в том числе у мудрецов Ликея, а около 245 г. до н. э. царь Птолемей III пригласил его в Александрию, чтобы сотрудничать с Музеем и служить наставником будущему Птолемею IV. В 234 г. до н. э. Эрастофен стал пятым главой Александрийской библиотеки. Его основные труды «Об измерениях Земли», «Географические мемуары», «Гермес», к сожалению, были полностью утрачены, но многие цитаты из них сохранились в работах последователей.

То, как Эратосфен измерял Землю, описал философ-стоик Клеомед в своем труде «О небе»{100}, написанном после 50 г. до н. э. Эратосфен взял за основу наблюдение того, что в полдень во время летнего солнцестояния в Сиене, египетском городе, который Эратосфен считал расположенным точно к югу от Александрии, солнце находится на небе прямо над головой, а измерения, которые сам Эратосфен производил с гномоном в Александрии, показали, что во время солнцестояния в полдень направление на Солнце отклонено на 1/50 полного круга, или 7,2° от вертикали. Отсюда он заключил, что длина окружности земного шара в 50 раз больше, чем расстояние между Александрией и Сиеной (см. техническое замечание 12). Расстояние от Александрии до Сиены измерялось (вероятно, пешими измерителями, которые тренировались совершать шаги одинаковой длины) и равнялось 5000 стадиям, поэтому длина окружности всей Земли должна была составлять 250 000 стадий.

Насколько точно это значение? Мы не можем определенно сказать, какова была длина стадии, которую использовал Эратосфен, и Клеомед, по всей видимости, тоже этого не знал, потому что у древних греков не было общего стандарта длины наподобие наших километров или миль. Но, даже не зная длину стадии, мы можем оценить, насколько точно Эратосфен применял астрономический метод. По нынешним данным, длина окружности Земли в 47,9 раз больше расстояния между Александрией и Сиеной (нынешним Асуаном), поэтому вывод Эратосфена о том, что длина окружности земного шара в 50 раз больше этой дистанции, вполне точный, независимо от конкретной длины одной стадии{101}. И если не в географии, то в астрономии Эратосфен наверняка добился успеха.

8. Загадка планет

Не только Солнце и Луна в течение года двигаются по зодиаку с запада на восток, совмещая это передвижение с ежедневным вращением с востока на запад вокруг северного полюса мира вместе с остальным звездным небом. Еще представители древних цивилизаций заметили, что, если наблюдать в течение многих дней, можно заметить, как пять «звезд» двигаются по небосклону с запада на восток и почти так же, как Солнце и Луна, проходят по одному и тому же пути на фоне неподвижных звезд. Греки назвали их странствующими звездами, или планетами, и дали имена богов: Гермес, Афродита, Арес, Зевс и Кронос. Римляне перевели эти имена как Меркурий, Венера, Марс, Юпитер и Сатурн. Вслед за вавилонянами они также включили в состав планет Луну и Солнце{102}, так что всего их было семь, как и дней в неделе{103}.

 

Планеты движутся по небу с разной скоростью: Меркурий и Венера проходят свой путь по зодиаку за год, Марс – за год и 322 дня, Юпитер – за 11 лет и 315 дней, Сатурн – за 29 лет и 166 дней. Все эти цифры являются средними значениями, поскольку планеты не движутся через зодиак с постоянной скоростью. Иногда они меняют направление движения на некоторое время, а потом возвращаются на свой привычный путь с запада на восток. Основная часть истории возникновения современной науки связана с длившимися более 2000 лет попытками понять особенности движения планет.

Одна из самых ранних теорий движения планет, Солнца и Луны принадлежала пифагорейцам. Они представляли себе, что пять планет, Солнце и Луна вместе с Землей обращаются вокруг огня, расположенного в центре. Чтобы объяснить, почему мы на Земле не видим этого огня, пифагорейцы предположили, что мы живем на той стороне Земли, которая обращена в противоположную от него сторону. Как и практически все досократики, пифагорейцы считали, что Земля плоская и имеет форму диска; они полагали, что этот диск всегда повернут одной стороной к расположенному в центре мироздания огню, а люди находятся на другой стороне. Дневное обращение Земли вокруг центрального огня предположительно объясняло видимое ежедневное движение более медленно вращающегося вокруг Земли Солнца, движение Луны, планет и неподвижных звезд{104}. Согласно Аристотелю и Аэцию, пифагореец Филолай в V в. до н. э. придумал противоземие – планету, обращающуюся там, где мы не можем наблюдать ее с нашей стороны Земли, то есть либо между Землей и центральным огнем, либо с другой стороны центрального огня. Аристотель объяснял появление этого противоземия увлечением пифагорейцев числами. Солнце, Луна, пять планет, неподвижная сфера со звездами и Земля составляли девять объектов, обращающихся вокруг центрального огня, а пифагорейцам хотелось, чтобы их было десять, поскольку десять является идеальным числом, если представить его следующим образом: 10=1+2+3+4. Как с некоторым презрением описывает Аристотель, пифагорейцы

«… элементы чисел предположили элементами всех вещей и всю вселенную <признали> гармонией и числом. И все, что они могли в числах и гармонических сочетаниях показать согласующегося с состояниями и частями мира и со всем мировым устройством, это они сводили вместе и приспособляли <одно к другому>; и если у них где-нибудь того или иного не хватало, они стремились <добавить это так>, чтобы все построение находилось у них в сплошной связи. Так, например, ввиду того, что десятка (декада), как им представляется, есть нечто совершенное и вместила в себе всю природу чисел, то и несущихся по небу тел они считают десять, поэтому на десятом месте они помещают противоземлю»{105}.

По всей видимости, пифагорейцы никогда не пытались показать, как их теория детально описывает видимое движение по небу Солнца, Луны и планет, проходящих на фоне неподвижных звезд. Объяснение этого видимого движения стало делом будущих веков и было завершено только во времена Кеплера.

Решению этой задачи способствовало появление таких приборов, как гномон, необходимый для изучения движения Солнца, и других инструментов, которые позволили измерить углы между направлениями на различные звезды и планеты или углы между этими астрономическими объектами и линией горизонта. Конечно, все астрономические наблюдения в те времена проводились невооруженным глазом. По иронии судьбы Клавдий Птолемей, который подробно изучил преломление (рефракцию) и отражение света (в том числе эффекты рефракции в атмосфере при определении видимого положения звезд) и который, как мы увидим далее, сыграл основополагающую роль в истории астрономии, так и не понял, что линзы и изогнутые зеркала могут быть использованы для того, чтобы увеличивать изображения небесных тел, как это было сделано в телескопе-рефракторе Галилео Галилея и зеркальном телескопе, изобретенном Исааком Ньютоном.

Но не только измерительные инструменты помогли достичь огромных успехов научной астрономии в Греции. Эти достижения стали возможны благодаря открытиям в области математики. В то время как решались новые задачи, основной спор и в античной, и в средневековой астрономии велся не о том, что движется – Земля или Солнце, а по поводу двух разных объяснений, каким образом Солнце, Луна и планеты обращаются вокруг неподвижной Земли. Как мы увидим далее, большинство этих споров было связано с различиями в понимании роли математики в естественных науках.

Все началось с того, что я люблю называть решением «домашнего задания» Платона. Согласно последователю неоплатонизма Симпликию, писавшему в 530 г. в своих комментариях к трактату Аристотеля «О небе»,

«Платон, безоговорочно потребовавший, чтобы небесные движения были круговыми, равномерными и упорядоченными, предложил математикам проблему: какие надо принять гипотезы, чтобы посредством равномерных круговых упорядоченных движений спасти явления, касающиеся планет»{106}.

«Спасти (или сохранить) явления» – это традиционный перевод; Платон спрашивает, какие комбинации движений планет (в том числе Солнца и Луны) по круговым орбитам с постоянной скоростью всегда в одном и том же направлении могли бы показать ту картину, которую мы в действительности наблюдаем.

Первоначально этот вопрос был адресован современнику Платона математику Евдоксу Книдскому{107}. Он создал математическую модель, описанную в утерянной книге «О скоростях», содержание которой дошло до нас в изложении Аристотеля{108} и Симпликия{109}. Согласно этой модели, звезды расположены вокруг Земли на сфере, которая поворачивается в течение дня с востока на запад, тогда как Солнце, Луна и планеты находятся на сложной системе вращающихся сфер. Самая простая модель имела две сферы для Солнца. Внешняя сфера в течение суток поворачивается вокруг Земли с востока на запад, обладая той же самой геометрической осью и скоростью вращения, что и сфера, где находятся звезды, но Солнце также находится на экваторе внутренней сферы, которая вращается вместе с внешней так, как если бы была прикреплена к ней, но за год один раз поворачивается вокруг своей оси с запада на восток. Ось внутренней сферы наклонена на 23,5° по отношению к внешней сфере. Это должно было объяснять видимое суточное движение Солнца и его годичное прохождение через зодиакальные созвездия. Точно так же предполагалось, что Луна расположена на двух сферах, вращающихся вокруг Земли в противоположных направлениях, с той лишь разницей, что внутренняя сфера Луны совершает один оборот с запада на восток не за год, а за месяц. По не совсем ясным причинам Евдокс добавил по третьей сфере для Солнца и для Луны. Такие теории называются гомоцентрическими, поскольку сферы с расположенными на них планетами, Солнцем и Луной вращаются вокруг центра, совпадающего с центром Земли.

Нерегулярные движения планет представляли более сложную проблему. Евдокс выделил для каждой планеты по четыре сферы. Во-первых, внешняя сфера, совершающая за сутки оборот вокруг Земли с востока на запад, с той же самой осью вращения, что и сфера неподвижных звезд и внешние сферы Солнца и Луны. Далее – такая же сфера, как внутренние сферы Солнца и Луны, вращающаяся медленнее с характерной для каждой планеты скоростью с запада на восток и имеющая угол наклона оси вращения на 23,5° по отношению к внешней сфере. И, наконец, две сферы, наиболее близкие к центру, вращающиеся практически с одинаковой скоростью в противоположных направлениях вокруг осей, почти параллельных друг другу, и имеющие большие углы наклона по отношению к осям вращения двух внешних сфер. Планета «крепится» к сфере, наиболее близкой к центру. Две внешние сферы дают каждой планете ее суточное движение вокруг Земли вместе со звездами и ее обычный путь по зодиакальным созвездиям в течение более длительных периодов. Эффекты от двух сфер, вращающихся в противоположных направлениях, почти не заметны, поскольку их оси вращения практически параллельны. Небольшой угол между осями добавляет движение по «восьмерке» планетам, движущимся по знакам зодиака, таким образом объясняя периодические развороты планет. Греки называли такой путь гиппопеда (греч. ἱπποπέδη – лошадиные путы), потому что он напоминал путы, которыми оплетали ноги лошади, чтобы она не уходила слишком далеко.

Модель Евдокса не полностью согласуется с наблюдениями Солнца, Луны и планет. Например, его описание движения Солнца не соответствует разной длине времен года, которая, как мы уже видели в главе 6, была определена Евктемоном с помощью гномона. Модель Евдокса допускает серьезные ошибки в объяснении движения Меркурия и слабо соответствует реальному движению Венеры и Марса. Улучшенную модель предложил Каллипп из Кизика. Он добавил еще по две сферы для Солнца и Луны и по одной для Меркурия, Венеры и Марса. Модель Каллиппа лучше описывает движение небесных тел, хотя, согласно ей, в видимом движении планет должны быть некоторые особенности, которых на самом деле нет.

В концентрических моделях Евдокса и Каллиппа Солнце, Луна и планеты были снабжены отдельным комплектом сфер, в котором все внешние сферы вращаются в полном согласии с отдельной сферой, на которой находятся неподвижные звезды. Это один из первых примеров того, что современные физики называют «подгонка теории». Мы называем теорию «подогнанной», когда она приводит гипотезы и данные наблюдений в соответствие друг с другом без всякого понимания, почему они должны быть отождествлены. Появление «подгонки» в научной теории – это словно ответ на вопль природы, требующей внятного объяснения явлений.

Неприятие современными физиками подгонки привело к открытию фундаментальной важности. В конце 1950-х гг. было обнаружено, что у двух типов нестабильных частиц, которым дали название «тау-мезоны» и «тета-мезоны», распад происходит разными путями: тета-мезоны распадались на два пиона (более легкие частицы), а тау-мезоны – на три. Тау- и тета-мезоны имели не только одинаковую массу, но и примерно одинаковое время существования и, несмотря на это, распадались совершенно по-разному! Физики предположили, что тау-мезоны и тета-мезоны не могут быть одной и той же частицей из-за природной симметрии между правым и левым (которая говорит о том, что законы природы должны работать одинаково и для нашего мира, и для мира, отраженного в зеркале). Эта симметрия не позволяла одной и той же частице распадаться то на два пиона, то на три.

Используя имевшиеся у нас тогда знания, стало возможным подогнать константы в теориях, чтобы сделать массу и время жизни тау-мезонов и тета-мезонов одинаковыми, но такую теорию трудно было принять за истину, ведь она была бы безнадежно подогнана. В конце концов выяснилось, что подгонка совершенно не нужна: тета- и тау-мезоны все же оказались одной частицей. Симметрия между правым и левым, хотя и подчиняет себе силы, удерживающие вместе атомы и их ядра, вовсе не распространяется на некоторые процессы распада, в том числе и на распад так называемых тау- и тета-мезонов{110}.

Физики, решившие эту задачу, совершенно правильно не поверили идее о том, что тау-мезоны и тета-мезоны случайно имеют одну и ту же массу и время жизни. В этой гипотезе слишком многое было подогнано.

Не так давно мы столкнулись с еще более тревожным вариантом подгонки. В 1998 г. астрономы выяснили, что расширение Вселенной не замедляется, как этого можно было ожидать благодаря взаимному гравитационному притяжению галактик, но, напротив, ускоряется. Причиной этого ускорения считается энергия самого космоса, так называемая «темная энергия». Теории говорят о разных возможных источниках этой энергии. Некоторые из них мы можем оценить, другие – нет. Вклад тех источников, которые мы можем оценить, оказывается больше, чем весь объем темной энергии, который был зафиксирован астрономами, примерно на 56 порядков величины – то есть это единица с 56 нулями. Это не парадокс, поскольку мы можем положить, что эти источники компенсируются действием контристочников, которые мы рассчитать не можем. Но тогда их совокупная интенсивность должна быть равной наблюдаемым источникам с точностью до 56-й значащей цифры. Такой уровень подгонки неприемлем, и теоретики должны потрудиться, чтобы объяснить как-то иначе, почему количество темной энергии намного меньше, чем оно должно быть по расчетам. (Одно возможное объяснение упоминается в главе 11.)

В то же самое время нужно признать, что некоторые явные примеры кажущейся подгонки являются совершенно случайными. Например, расстояния от Земли до Луны и Солнца пропорциональны их диаметрам, поэтому с Земли диски Солнца и Луны кажутся примерно одинакового размера. Это доказывается тем, что во время полного солнечного затмения лунный диск точно закрывает солнечный. Нет никакой причины искать в этом факте что-то, кроме простого совпадения.

Аристотель попытался придать моделям Евдокса и Каллиппа бо́льшую реалистичность. В «Метафизике»{111} он предложил соединить все сферы в единую взаимосвязанную систему. Вместо того чтобы выделить самой удаленной планете – Сатурну четыре сферы, как Евдокс и Каллипп, Аристотель оставил только три внутренние сферы; суточное движение Сатурна с востока на запад объяснялось привязкой этих трех сфер к сфере неподвижных звезд. Также Аристотель добавил три дополнительные сферы, вращающиеся в противоположном направлении, внутрь трех сфер Сатурна. Это было нужно для того, чтобы свести к нулю влияние движения трех сфер Сатурна на следующую планету, Юпитер, внешняя сфера которой крепилась к самой удаленной из этих трех дополнительных сфер между Юпитером и Сатурном.

После добавления трех дополнительных сфер, вращающихся в противоположном направлении, и привязки внешней сферы Сатурна к сфере неподвижных звезд у Аристотеля получилась достаточно изящная картина. Больше не нужно было задаваться вопросом, почему Сатурн каждый день двигается по небосклону точно так же, как звезды, – Сатурн физически привязан к их сфере. Но потом Аристотель сам все испортил: он оставил Юпитеру четыре сферы, точно так же как Евдокс и Каллипп. Проблема в том, что после этого Юпитер должен был совершать суточное вращение вместе с Сатурном и одновременно вместе с наиболее удаленной своей сферой, таким образом он оборачивался бы вокруг Земли два раза в сутки. Не мог ли Аристотель забыть, что три дополнительные сферы, вращающиеся в противоположном направлении, компенсируют лишь особые перемещения Сатурна, но не его суточное обращение вокруг Земли?

Хуже того, Аристотель добавил только три сферы (которые должны были компенсировать особые перемещения Юпитера), вращающиеся в противоположном направлении, внутрь его четырех сфер, и затем придал Марсу, следующей планете, целых пять сфер, которые придумал Каллипп. Следовательно, Марс за сутки совершал бы три оборота вокруг Земли. Далее в том же духе, по схеме Аристотеля, Венера, Меркурий, Солнце и Луна должны были оборачиваться вокруг Земли, соответственно, четыре, пять, шесть и семь раз за сутки.

Эта очевидная ошибка поразила меня, когда я читал «Метафизику» Аристотеля. Позже я узнал, что ее отметили еще несколько авторов, в том числе Дж. Дрейер, Томас Хит и В. Росс{112}. Некоторые из них объясняли эту ошибку тем, что текст в этом месте был искажен. Но если Аристотель в самом деле поместил описание этой схемы в известную нам стандартную версию «Метафизики», тогда это нельзя объяснить тем, что он мыслил в категориях, отличных от привычных нам. Мы вынуждены признать, что Аристотель оказался невнимателен, работая над задачами, которые были ему интересны.

Даже если бы Аристотель разместил вращающиеся в противоположном направлении сферы в правильном порядке и каждая планета оборачивалась бы вокруг Земли вместе со звездами только один раз за сутки, в его схеме все равно оставалось бы слишком много подгонки. Вращающиеся в противоположном направлении сферы, вставленные внутрь сфер Сатурна, чтобы компенсировать влияние его особых перемещений на движение Юпитера, должны были вращаться в точности с той же скоростью, что и три сферы Юпитера. То же самое справедливо и для планет, находящихся ближе к Земле. И точно так же, как у Евдокса и Каллиппа, в схеме Аристотеля вторые сферы Меркурия и Венеры должны были вращаться в точности с той же скоростью, что и вторая сфера Солнца, чтобы объяснить тот факт, что Солнце, Меркурий и Венера движутся по зодиаку вместе; таким образом внутренние планеты на небе видны недалеко от Солнца. Например, Венера – это всегда утренняя или вечерняя звезда, она никогда не видна высоко на небе в полночь.

89Архимед. Сочинения. С.359.
6Автор имеет в виду карусель, на которой помимо общего вращения происходит вращение посадочных мест. – Прим. ред.
90Там же. С. 337.
91Аристотель. Сочинения. Т. 3. С. 336.
92Существует знаменитое устройство эпохи античности, известное как Антикитерский механизм. Найдено оно было в 1901 г. ныряльщиками – ловцами губок у берегов острова Антикитера, расположенного в Средиземном море между Критом и континентальной Грецией. Предполагается, что он утонул в море во время кораблекрушения в период 150–100 гг. до н. э. Хотя Антикитерский механизм превратился в изуродованный коррозией кусок бронзы, ученым удалось понять, как он работал, проанализировав его конструкцию при помощи рентгеновских лучей. По всей видимости, это был не планетарий, а разновидность механического календаря, который мог указать наблюдаемое расположение Луны и планет в зодиакальных созвездиях на любую дату. Самое важное, о чем говорит Антикитерский механизм, – это тот факт, что его сложный передаточный механизм из множества шестерней служит свидетельством высокого уровня развития техники в эпоху эллинизма.
93Цицерон. Диалоги: О государстве. О законах. / Пер. В.О. Горенштейна, прим. И. Н. Веселовского и В. О. Горенштейна, ст. С. Л. Утченко; отв. ред. С. Л. Утченко. (Серия «Литературные памятники»). – М.: Наука, 1966.
94Этот эксперимент был реконструирован в наше время. См.: Albert van Helden, Measuring the Universe – Cosmic Dimensions from Aristarchus to Halley (University of Chicago Press, Chicago, Ill., 1983), pp. 10–13.
95Птолемей К. Альмагест: Математическое сочинение в тринадцати книгах. – М.: Наука, 1998. С. 269.
96Небесная широта – это угловое расстояние от звезды до линии эклиптики. Что касается долготы, то на Земле мы отмеряем ее от Гринвичского меридиана, а небесная долгота есть угловое расстояние, измеренное по малому кругу на фиксированной небесной широте, от звезды до небесного меридиана, на котором находится Солнце в день весеннего равноденствия.
97Другую точку зрения см.: O. Neugebauer, A History of Ancient Mathematical Astronomy (Springer-Verlag, New York, 1975), pp. 288, 577.
98Альмагест. С.214.
99Основываясь на собственных наблюдениях звезды Регул, Птолемей в своем «Альмагесте» привел значение смещения в один градус примерно за 100 лет.
100Cleomedes, Lectures on Astronomy, ed. and trans. A. C. Bowen и R. B. Todd (University of California Press, Berkeley and Los Angeles, 2004).
101Эратосфену просто повезло. Сиена была расположена не точно к югу от Александрии (ее долгота 32,9° в. д., а Александрии – 29.9° в. д.), и в полдень во время летнего солнцестояния солнце не расположено в Сиене точно в зените, но на угловом расстоянии 0,4° от вертикали. Оба этих отклонения взаимно скомпенсировали друг друга. На самом деле Эратосфен измерил отношение длины окружности Земли к расстоянию от Александрии до тропика Рака (который Клеомед называл летним тропическим кругом) (или северный тропик. – Прим. пер.), параллели, на которой во время летнего солнцестояния солнце действительно расположено точно в зените в полдень. Александрия расположена на широте 31,2°, а широта тропика Рака 23.5°, что меньше широты Александрии на 7,7°, поэтому длина окружности Земли в действительности равна 360°/7,7°, что в 46,75 раз больше расстояния между Александрией и тропиком Рака, и лишь чуть-чуть меньше, чем число 50, названное Эратосфеном.
102Для ясности, когда в этой главе я говорю о планетах, я имею в виду только пять из них: Меркурий, Венеру, Марс, Юпитер и Сатурн.
103Мы можем видеть связь дней недели с названием планет и именами богов в названиях дней недели в английском языке. Суббота, воскресенье и понедельник (Saturday, Sunday, Monday) явно связаны с Сатурном, Солнцем и Луной. Названия вторника, среды, четверга и пятницы (Tuesday, Wednesday, Thursday, Friday) связаны с именами немецких богов, у которых, вероятно, были латинские эквиваленты: Тир ассоциировался с Марсом, Вотан – с Меркурием, Тор – с Юпитером, а Фригга – с Венерой.
104G. W. Burch, The Counter-Earth // Osiris 11, 267 (1954).
105Аристотель. Метафизика. С. 27.
106Симпликий. Комментарий к четырем книгам трактата Аристотеля «О небе». Комментарий ко второй книге // Историко-философский ежегодник. 2004. М., 2005. С. 12.
107Модель Евдокса очень хорошо описана в: James Evans, The History and Practice of Ancient Astronomy (Oxford University Press, Oxford, 1998), pp. 307–309.
108Метафизика. Книга XII. Гл.8.
109См.: On Aristotle, On the Heavens 3.1–7 (Cornell University Press, Ithaca, N.Y., 2005), 493.1-497.8, pp. 33–36; trans. I. Mueller.
110Эта симметрия была открыта в ходе эксперимента в 1956 г. физиками Ву Цзяньсюн и Янгом Чжэньнином.
111Метафизика. Книга XII. Гл. 8.
112См.: D. R. Dicks, Early Greek Astronomy to Aristotle (Cornell University Press, Ithaca, N.Y., 1970), р. 202. Дикс высказывает различные версии, почему Аристотель допустил эти ошибки.
1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26 
Рейтинг@Mail.ru