Еще до появления искусственного интеллекта в том виде, в каком он известен нам сейчас, в научном мире широко обсуждались возможности развития технологий в сфере познавания и анализа. После войны наука стала развиваться быстрее, и в 1956 году в Дартмутском колледже прошла первая конференция, посвященная возможностям искусственного интеллекта.
Это было первое официальное научное мероприятие, в рамках которого серьезно обсуждались перспективы создания искусственного интеллекта, способного перенимать черты человеческого мышления. Конечно, это мероприятие было далеко от любых научных форумов современного образца, однако уже тогда перед учеными ставились задачи, которые весьма схожи с современными – на встрече разбирались возможности машины. Ученые хотели понять, можно ли обучить машину особенностям человеческого разума, сделать ее способной к обучению и саморазвитию. Считается, что именно в тот момент зародилась дисциплина ИИ. Позднее на основе разработанных и определенных в ходе обсуждения тезисов были сформированы базовые формы ИИ, позволяющие распознавать изображения, обрабатывать естественную речь.
По результатам конференции были определены дальнейшие курсы исследований. Ее участники Минский и Пейперт, стали авторами одной из важнейших научных работ, в которой впервые рассматривалось понятие нейросетей – синтетических систем, работающих по принципу живых нейронных связей. Еще сравнительно молодая компания IBM также отправила на конференцию своего представителя, Артура Сэмюэла, работы которого легли в основу системы, способной играть в шашки.
Позднее, в 1961 году Артур Сэмюэл представил программу, которой удалось одержать победу над четвертым по США игроком в шашки. К 70-м годам интерес к искусственному интеллекту угас, и финансирование основных проектов и научных исследований почти прекратилось. Это было время символьных систем, работавших в определенных логических рамках, которые, впрочем, не имели большого успеха.
Однако работа продолжалась – энтузиасты не отказывались от идеи создать машину, способную мыслить. Следующим шагом стало открытие экспертных систем – технологий, способных обрабатывать, анализировать и оценивать данные. Таким образом, в 80-е годы машины вышли за рамки предложенных логических правил и принялись делать выводы самостоятельно. Интерес к искусственному интеллекту вновь начал расти, что привело к появлению понятия машинного обучения, распространившегося в 90-е.
Это положило начало эпохе повсеместной эксплуатации компьютеров. Теперь они устанавливались не только в крупных офисах и на предприятиях – многие люди обзавелись личными компьютерами. Казалось бы, именно в тот момент искусственный интеллект должен был пережить очередной подъем, однако человечество погрузилось в освоение новых технологий – мобильной связи, датчиков, интернета.
На базе этих инноваций некоторые специалисты принялись разрабатывать и тестировать адаптивные системы, что положило начало машинному обучению. Этот процесс связан с использованием обновленных данных – при их вводе искусственный интеллект начинает самостоятельный анализ, который и позволяет ему учиться и совершенствоваться. Сам процесс машинного обучения положил начало новой эре в развитии искусственного интеллекта, который в наше время используется в самых разных сферах жизни и работы человека.
Очевидно, история развития искусственного интеллекта наполнена самыми разными событиями, периодами взлетов и падений, однако сейчас, когда инновации приносят практическую пользу и широко применяются в самых разных сферах деятельности, наступает лучший момент для их применения. Искусственный интеллект уже помогает принимать, обрабатывать и выполнять заказы, он участвует в поиске мошенников, отвечает на звонки клиентов, дает инструкции начинающим пользователям сервисов, ищет музыку по запросам посетителей, а также напрямую участвует в физических процессах – например, в производстве.
Как показывает история, когда машины и люди начинают соперничать за рабочие места на заводах, именно человек нередко оказывается в невыгодной позиции. В конце девятнадцатого и начале двадцатого века такое уже неоднократно происходило – с запуском новых машин сокращались рабочие места, ведь обслуживание техники обходилось значительно дешевле, чем оплата труда множества людей.
Однако времена меняются. Теперь машины в целом и искусственный интеллект в частности не только не отнимают работу у людей, но также становятся причиной появления совершенно новых специальностей. Все дело в том, что в прошлом машины и люди выполняли одну и ту же работу. Теперь же эти обязанности можно разделить. Как это можно сделать? Весь вопрос заключается в адаптивности развития бизнеса – именно способность быстро приспосабливаться к новым тенденциям позволяет машинам и людям сотрудничать, а не конкурировать.
Искусственный интеллект позволяет управляющим, инженерам и людям с креативным мышлением находить новые способы применения своих талантов. Под влиянием новых технологий само понятие работы обретает новые оттенки, которые ранее были неизвестны. Прежде труд рабочего был необходим для выполнения самых однообразных и скучных функций. На мануфактурах и заводах старого образца работники могли часами выполнять одни и те же задачи, даже не надеясь на смену деятельности и разнообразие. Теперь, когда роботы берут на себя эти скучные функции, человек может работать в других сферах, где не нужно проводить целый день практически в неподвижности, выполняя только одну заданную программой функцию. На что же должен быть направлен труд человека?
Роботы облегчают задачи рядовых рабочих, либо берут самые сложные функции на себя, и со своей стороны человек может направить свое внимание на их совершенствование, доработку и адаптацию. Кроме того, специалисты по маркетингу и обслуживанию могут посвящать больше времени решению вопросов, связанных с продвижением и распространением товаров и услуг. Конечно, для достижения положительных результатов при разделении обязанностей каждый человек должен точно понимать, на что направляются его усилия. Кроме того, предпринимателям и руководителям стоит определить, какие обязанности следует доверить машинам, а какие лучше оставить за человеком.
Как известно, труд в ночную смену должен оплачиваться по более высокой ставке, нежели дневная работа, однако даже разница в доходах неспособна компенсировать ущерб, который получает человеческий организм, вынужденный проводить в активной деятельности часы, предназначенные для отдыха. Лучшим решением было бы и вовсе упразднить ночные смены. Но как сделать это без ущерба для производительности? Токийские предприниматели решили этот вопрос.
Компания Preferred Networks, работающая в Японии, в содружестве с фирмой Fanuc, представила вниманию японских производителей новые манипуляторы. Их задача – заменять человека в ночную смену. Сами по себе машины уже оснащены лучшими камерами и чувствительными датчиками, позволяющими им производить сборку техники и выполнение других операций практически без ошибок. Но их главное преимущество – они могут учиться. Для этого разрабатываются новые программы, которые внедряются в спектр функций роботов, способных освоить их без помощи человека, только с использованием техник машинного обучения.
Как выглядит этот процесс? Один из разработчиков этого проекта, Шохей Хидо, подтвердил, что на обучение роботу требуется несколько часов, однако после завершения этого процесса его продуктивность составляет почти 90%. При этом роботу демонстрируется результат, которого он должен достичь, и он сам подбирает нужные алгоритмы для его достижения. Ранее, когда роботы могли двигаться только под руководством встроенных схем, этим занимались программисты – они меняли программное обеспечение и обновляли систему, на что также уходили часы сложной, скучной и ответственной работы. Теперь же, когда робот может справиться с этими задачами без помощи человека, внимание программистов направляется на решение более интересных задач. Еще удивительнее, что такие роботы могут обмениваться опытом – если один представитель группы освоит определенный навык, он может передать его остальным участникам за более сжатые сроки.
Еще в 1990 году Родни Брукс, будущий основатель компаний iRobot и Rethink Robotics, опубликовал свой труд под названием «Слоны не играют в шахматы». В этой статье он развил идею, в рамках которой следовало отойти от стандартных протоколов программирования и испытать новый подход – оснастить роботов датчиками, что позволило бы расширить их возможности. На основе его трудов специалисты совершили настоящий прорыв.
Ярчайшие представители последнего поколения роботов – так называемые коботы, разработанные фирмой Rethink Robotics. Оснащенные десятками датчиков, они распознают предметы вокруг себя и поэтому могут работать рядом с людьми – им не требуются специальные свободные участки или ограждения, защищающие работников от возможного нанесения вреда.
Компания Siemens уже давно внедрила в свою работу роботов – им доверена сборка сложных моделей, зачастую даже экспериментальных образцов, разработанных в лабораториях. Такие роботы умеют видеть, поскольку оснащены соответствующими сенсорами. Другой пример – роботы, которые трудятся на производстве Hitachi. Там машины не только занимаются однообразной и физически сложной работой, но также передают работникам команды, сформированные на основе анализа данных, меняющихся в режиме реального времени. Производственный процесс при этом ежедневно подстраивается под нужды потребителей, поскольку данные обрабатываются с небывалой скоростью, а команды передаются мгновенно.
Конечно, на каждом производстве остаются задачи, с которыми может справиться только человек. Автоматическая сварка может прекрасно справляться с простыми задачами – например, когда нужно соединять прямые и длинные металлические детали. Там, где требуется креативный подход – на сложных и мелких соединениях и в труднодоступных местах – по-прежнему незаменим труд человека. Однако задачи роботов, как мы уже поняли, заключаются не в соперничестве с человеком, а в сотрудничестве с ним, поэтому на долю машин теперь приходится самая опасная и неинтересная работа.
Роботы последних поколений достаточно чувствительны и безопасны, они также разработаны с расчетом на небольшие столкновения с окружающими объектами – теперь энергия от удара поглощается специальными механизмами, что делает работу значительно безопаснее. Однако разработчики из Fraunhofer IML пошли еще дальше и представили на производстве целые комплексы, которые могут самостоятельно настраиваться. Зачем это нужно? Такие производственные линии могут заниматься сборкой не одной и той же выбранной программой модели, они способны несколько раз менять задачи. Они также способны восполнять пробелы – если определенные производственные сегменты выходят из строя, их задачи распределяются между другими линиями.
Что же остается человеку? Специалисты, которые ранее выполняли однообразные функции, контролируя работу роботов, теперь могут посвящать время решению инженерных задач – проработке механизмов, совершенствованию моделей.
Но разве это не опасно? Что если оборудование выйдет из строя? Элементы искусственного интеллекта позволяют добиться больших успехов и в контроле – теперь они могут самостоятельно собирать данные о состоянии техники и передавать информацию о любых изменениях рабочим. Людям больше не нужно осматривать и проверять оборудование вручную – со всем справляются датчики и обучающиеся программы.
Каждый автомобиль нуждается в регулярном техническом осмотре. Это не очень удобно, поскольку отнимает лишнее время у водителя, а также нагружает автосервисы, отнимает средства и требует соблюдения графика. Но если технический осмотр настолько важен у отдельных автомобилей, то на производственных объектах он становится неотъемлемой частью работы. Регулярное обслуживание машин, включающее в себя осмотр, может тормозить производство, хотя зачастую во время этих процедур специалисты не выявляют никаких неисправностей – они лишь убеждаются в том, что техника работает правильно. Если бы можно было привлекать специалистов только в моменты, когда техника действительно нуждается во вмешательстве, но при этом еще не поломана и работает вполне исправно, это значительно сократило бы расходы времени и средств.
Именно этому вопросу посвящены труды разработчиков платформы Predix. Эта платформа следит за состоянием подключенной к ней техники, что открывает большие перспективы.
Например, собранные платформой данные за определенный период времени могут использоваться для статистического анализа – на их основе можно выявить самые слабые детали и определить средний срок их службы. Кроме того, входящие в состав платформы датчики позволяют проводить исследования прямо во время производственного процесса – их можно устанавливать внутри турбин и сложных устройств, измеряя их выносливость и реакцию на нагрузки. К этому следует добавить и пользу от полученных данных, на базе которых производитель может сформировать рекомендации по более безопасной и эффективной эксплуатации техники.
Успешно применяющая эту технологию компания General Electric уже продемонстрировала впечатляющие результаты – производительность ее ветряных электростанций увеличилась на 20%.
Кроме того, искусственный интеллект, управляющий дронами – беспилотными летательными аппаратами, оснащенными датчиками и съемочной техникой – может в значительной степени упростить задачи предприятий, занимающихся добычей сырья. Дроны с легкостью проникают в местности, которые остаются труднодоступными для людей. Они собирают нужные данные и передают их операторам, а в некоторых случаях анализируют информацию сами. Помощь дронов незаменима и в работе – компания BHP Billiton Ltd из Австралии использует летательные аппараты для проверки состояния техники и ландшафта. Помощь дронов практически незаменима, когда речь идет о контролируемых взрывах, за счет которых человек получает доступ к нужным ресурсам – техника проверят состояние почвы, обеспечивает видимость и проверяет, не находятся ли люди в опасной зоне. В этом случае используется уже знакомая нам платформа Predix.
Обычная проблема складов заключается в невозможности идеально организовать пространство. Между стеллажами и паллетами оставляют достаточно широкие проходы, которые позволяют людям свободно перемещаться с грузом, когда они передвигают его вручную или при помощи техники. За счет этого склады занимают большую территорию и нуждаются в сложном обслуживании.
Роботы достаточно эффективно решают эту проблему. Они без проблем поднимают, удерживают и переносят сложные грузы, доставляют их к специалистам, занимающимся сортировкой, а также очень быстро перемещаются по складам. Привлечение роботов к работе на складах позволило таким крупным компаниям как Amazon и L’Oreal существенно повысить продуктивность, уменьшить число несчастных случаев на складах. Как заверяет один из разработчиков складских машин, Джо Каракаппа, занимающий пост вице-президента компании Symbotic, вскоре такие роботы помогут в два раза уменьшить территорию любого склада.
Люди, которые до этого управляли погрузчиками вручную, а также выполняли сложные и опасные задачи, теперь могут переключиться на более интересную и разнообразную работу – некоторые продолжают заниматься сборкой заказов, другие посвящают время ремонту и обучению роботов.
Однако размеры складов и сложность протекающих в них процессов – далеко не все проблемы современных предпринимателей, занимающихся доставкой товаров. Чаще всего система логистики сталкивается с множеством вопросов, которые приходится решать слишком быстро – запросы людей растут, скорость операций повышается.
Весьма распространенные в наше время маркетплейсы сотрудничают с сотнями разных поставщиков и получателей, и это вынуждает их оперировать массивным объемом данных. При этом каждый отправитель и получатель имеют свои особенности и запросы, и информацию обо всех этих тонкостях собирает, структурирует и предоставляет специалистам искусственный интеллект. Будучи встроенным в логистические цепочки, он позволяет понять, как протекают те или иные процессы, в чем нуждаются поставщики, как часто они задерживают товар.
В работе самих складов машины также берут на себя интеллектуальный компонент – они подсчитывают количество оставшегося товара, а также отслеживают динамику, с которой раскупают те или иные позиции. Это позволяет управляющим составлять прогнозы, вовремя восполнять нужные образцы продукции, работая без ошибок и сбоев.
Неправильно устроенная логистика может привести к большим затратам – сюда включаются расходы на топливо, оплату труда, а также издержки, возникающие из-за неправильного учета продукции. Каждый производитель мог бы терять значительно меньше средств, если бы получил возможность точно прогнозировать динамику спроса на те или иные товары. Данные, которые предоставляют машины, позволяют приблизиться к желаемому результату и добиться в этом деле серьезных успехов. При правильном использовании ИИ в работе логистической системы крупные производители могут снизить объем нереализованных товаров почти на треть – это огромные средства, которые можно направить на другие, более креативные и продуктивные задачи.
В масштабе мирового лидера Procter & Gamble такие перемены могут сокращать ненужные расходы почти на 1 млрд. долларов ежегодно.
В чем заключаются главные сложности работы фермера? Кроме тяжелой физической работы, которую отчасти упростили тракторы, комбайны и автоматические оросительные системы, каждый фермер сталкивается с естественными проблемами – заболеваниями, истощением почвы, изменением климата. Зачастую проблемы успевают разрастись до масштабов, когда их уже сложно контролировать, и фермерам приходится принимать решения на фоне уже имеющихся убытков. При этом пригодные для засева земли, а также источники пресной воды постепенно теряют свою эффективность – ухудшающиеся экологические условия уже не позволяют производить прежний объем пищи на многократно обработанных территориях. Все эти вопросы стоят как никогда остро на фоне роста земного населения – с каждым годом для удовлетворения базовых нужд людей требуется все больше еды.
Как уменьшить потери, повысить эффективность и вовремя замечать любые проблемы? В этих задачах решающую роль может сыграть искусственный интеллект – на сей раз речь идет об интернете вещей, работа которого основывается на установке множества датчиков, связанных в общую сеть. Если подобная система работает на определенном засеянном участке, она может в режиме реального времени передавать информацию об изменениях, происходящих с растениями. К примеру, с помощью таких систем можно зафиксировать случай заражения культуры гораздо раньше, чем это сделает фермер, которому для этих целей приходится обходить огромную территорию.
Еще эффективнее эти системы работают, если они подчиняются командам фермера. К примеру, если на участке было зафиксировано превышение допустимой температуры, эти данные мгновенно передаются фермеру, и он может принять решение о защите земли. Однако для этого ему не придется искать средства и перемещаться – он может отдать нужные команды системе, и она сама обо всем позаботится.
В этом направлении уже работает компания Accenture, технические решения которой позволяют отслеживать передвижения насекомых, анализировать состав почвы и удобрений. Произведенные в результате длительных исследований системы способны не только замечать изменения и информировать фермеров – они также вырабатывают предпочтительные решения, которые и предлагают человеку. Фермеру остается выбрать наиболее подходящий вариант и утвердить его.
Однако возможности искусственного интеллекта на этом не заканчиваются. Смелые решения, предлагаемые нейросетями, позволяют проектировать совершенно новые фермы с многоярусными конструкциями. Такие фермы потенциально способны приносить огромный урожай, занимая при этом минимум пространства, требуя лишь базовых затрат. Обслуживание таких систем, которое ранее могло бы показаться слишком опасным и трудоемким, теперь осуществляется при помощи специальных машин, а установленные в нужных местах датчики позволяют отслеживать температуру, влажность, содержание воды для полива и даже самой почвы.
В штате Нью-Джерси подобные решения уже внедрены в комплексе Ньюарк, где компания AeroFarms разбила собственный комплекс. При высокой производительности этот комплекс потребляет на 95% меньше влаги, что решает один из самых острых вопросов современности – рациональное использование водных ресурсов. Занимая сравнительно небольшой участок, такая ферма может приносить до 900 тонн зелени и овощей ежегодно.
Последовательное распространение таких технологий может стать эффективным решением для фермеров и предприятий, обеспечивающих население едой. Более того, в этом сегменте не приходится беспокоиться о потерянных рабочих местах, ведь основной проблемой фермерства последних лет стал именно недостаток рабочих рук – переезжая в города, люди оставляют свои участки, которым теперь можно будет найти совершенно новое применение. Крайне важно, что при внедрении искусственного интеллекта исчезнет проблема тяжелого труда, которая всегда волновала людей, работавших в секторе сельского хозяйства.