К принцессе Дзинтаре в гости приехала королева Никки с мужем Джерри. Королева заявила детям Дзинтары – Галатее и Андрею:
– У меня срочное дело к вашей маме, поэтому я её забираю, а вам оставляю Джерри в качестве няньки – в ближайшие вечера он вам будет рассказывать про электричество.
– Значит, он будет электрической нянькой! – сказала весело Галатея, которая давно была с Джерри на дружеской ноге.
– Я постараюсь не сильно искрить! – пообещал Джерри. – История, которую я хочу рассказать, меня всегда поражает. Я надеюсь, что и вам она понравится.
…Однажды к дому знаменитого итальянского учёного Алессандро Вольты подкатила карета, тяжело нагруженная сундуками и чемоданами. Рядом с кучером, который правил лошадьми, сидел молодой слуга. Он спрыгнул на землю и открыл дверцу кареты. Оттуда вышел элегантный господин, а за ним – его жена, дородная и пышно разодетая дама. Сварливым голосом она отдала распоряжение слуге насчёт чемоданов, а её муж устремился к хозяину дома, который не спеша гулял возле крыльца.
– Приветствую вас, сэр Хэмфри Дэви, – сказал Вольта. – Трудна ли была ваша дорога?
Гость представил Вольте супругу, а потом, после некоторого колебания, своего молодого помощника Майкла Фарадея.
Немало часов провёл Дэви в лаборатории Вольты, где знакомился с приборами, созданными всемирно известным учёным. Майкл ходил следом и внимательно записывал пояснения Вольты, иногда задавая вопросы, которые своей глубиной удивляли хозяина.
– У вас толковый помощник! – сказал он гостю.
К этому времени Дэви уже прославился своими открытиями в области химии и электролиза, сделанного с помощью вольтова столба.
– Я уже немолод, – сказал пожилой Вольта молодому Дэви. – Я нашёл пролив в новый океан, но исследовать его придётся вам, новому поколению. Я верю, что вы откроете множество секретов этого таинственного электричества, которое вырабатывается моей батареей.
Галатея нетерпеливо спросила:
– Оправдал ли Дэви надежды знаменитого Вольты?
Джерри ответил:
– Не совсем. Элегантный Дэви был крупным учёным, но по-настоящему великим исследователем электричества стал его молодой помощник – Майкл Фарадей. Именно он сумел разгадать основные тайны электрического дракона.
– Почему же жена Дэви обращалась с ним как со слугой? – спросила Галатея.
– Небогатый Дэви, женившийся на богатой вдове, не смог или не захотел внушить своей супруге хоть немного уважения к своему помощнику. В то время Британия была разделена на классы. Леди и джентльмены были элитой, а все остальные люди считались ниже их – вне зависимости от их заслуг и талантов.
Жена Дэви не считала Фарадея джентльменом и требовала, чтобы Фарадей ел вместе со слугами и ехал не внутри, а снаружи кареты. В конце концов Фарадей не выдержал такого унижения и вернулся домой в Британию. Он стал великим учёным и вошёл в историю благодаря своим открытиям, а супруга Дэви попала в историю как образец сварливости и чванства. И не только по отношению к Фарадею: когда несколько лет спустя больной Дэви отправился в новую поездку по Европе, его супруга отказалась сопровождать его, и он поехал в путешествие со своим братом. В дороге Дэви хватил удар, и он умер в возрасте пятидесяти лет, не выполнив многого из того, что он мог бы выполнить.
Вернёмся к Майклу Фарадею. Его жизнь была увлекательнее любого романа. Он был сыном кузнеца из лондонского пригорода и рос вместе со своими сестрами и братьями. Семья была дружной, но бедной. В 13 лет Майкл начал работать и поступил рассыльным в лондонский книжный магазин, который принадлежал французу-эмигранту Рибо. В магазине было немало научных книг, которые Майкл читал всё свободное время. Особенно ему нравились книги по химии и электричеству. Нередко в магазин приносили книги, которые нуждались в переплете. Если книга была интересной, то Майкл копировал её для себя. Рибо поощрял любознательного мальчугана. Читая книги, Майкл проводил опыты, которые там описывались.
– Но как он мог это делать? – удивилась Галатея. – Ведь у него отсутствовало оборудование.
– Конечно, Майклу по силам были только простые эксперименты, которые он мог провести с помощью инструментов и материалов из кузницы своего отца. Но отец Майкла поощрял занятия сына и помогал, чем мог: например, приобрёл для него лейденскую банку. Старший брат Майкла гордился своим младшим братом и тоже поддерживал его.
Учёные, посещавшие книжный магазин Рибо, замечали смышлёного подростка и помогали ему. Например, один из посетителей подарил Майклу билеты на лекции знаменитого Хэмфри Дэви, которые тот читал в Королевском институте. Майкл посетил несколько лекций Дэви, тщательно записал их и, переплетя в аккуратную книжку, послал Дэви с просьбой принять его на работу в институт. Этот наивный и смелый шаг Майкла принёс результат – Дэви был поражён усердием незнакомого юноши и ответил ему. Через несколько месяцев Дэви повредил глаза при взрыве в своей лаборатории – и 22-летний Майкл стал его помощником.
Майкл никогда не учился в школе или университете, но несколько лет, проведённых им в книжном магазине Рибо, оказали на него огромное влияние, сделали его достаточно образованным человеком.
– Мне кажется, что тут главный вопрос не в магазине, а в желании подростка учиться, – сказал Андрей.
– Согласен, но если бы Майкл работал в угольной шахте – а в те времена подростки его возраста часто вместе с отцами спускались под землю, то возможностей для самообразования у него было бы заметно меньше, чем во время работы в книжном магазине. Впоследствии Майкл Фарадей посвятил Джорджу Рибо одну из своих книг, а на книжном магазине Рибо, который уцелел до сих пор, висит мемориальная доска о том, что здесь когда-то работал великий учёный.
В том же 1813 году Майкл отправился с Дэви и его супругой в европейское путешествие. Так как слуга Дэви не захотел уезжать так надолго, то Дэви попросил своего помощника Майкла выполнять обязанности слуги. Покладистый Майкл согласился…
– Да, и мы уже знаем, чем это закончилось! – фыркнула Галатея.
– Вольтов столб распространился по всему миру, и его использование непрерывно приносило неожиданные открытия. До сих пор электрические явления стояли особняком от магнитных – таких как указывание стрелки компаса на север или притяжение магнитом железных опилок. Но люди чувствовали, что между этими явлениями должна быть глубокая связь.
Вольтов столб помог обнаружить единство электрических и магнитных явлений. Произошло это так.
Однажды дождливым утром 1820 года Ганс Христиан Эрстед, профессор Копенгагенского университета, показывал студентам на лекции опыт по нагреванию проволоки из-за текущего по ней тока от вольтовой батареи. На лабораторном столе среди другого оборудования лежал компас. Швейцар, принёсший в комнату дрова для камина, выпрямил усталую спину, с завистью глядя на учёных людей, которые не таскали тяжести целый день, – и заметил, что, когда профессор включил свою электрическую цепь, стрелка компаса дёрнулась.
– Сударь! – деликатно кашлянул остроглазый швейцар, обращаясь к учёному, который проводил этот простой опыт в сотый раз. – У вас тут компас… того… шалит!
Эрстед глубоко верил в связь магнитных и электрических явлений и придал этому дрожанию стрелки, замеченному швейцаром, большое значение. До Эрстеда учёные пробовали пропускать электрический ток через магнитную стрелку, но не добились никакого результата. Эрстед провёл серию опытов, в которых доказал, что стрелка компаса реагирует на включённый провод из любого, даже немагнитного металла и располагается по касательной к окружности вокруг провода.
– Ой, – сказала Галатея. – Касательной к окружности из провода?
– Если поставить провод с током вертикально, то стрелка компаса укажет не на провод, а, например, влево. Если окружить провод многими компасами, то их стрелки выстроятся в горизонтальную окружность, в центре которой будет торчать вертикальный провод.
– Ага, – поняла Галатея. – Стрелки образуют кольцо, в центре которого будет торчать, как палец, этот самый провод.
– Верно, – согласился Джерри. – Я вижу, что твоя любовь к украшениям стала помогать тебе в физике.
– Ну… – засмущалась Галатея. – Совсем немножко…
– Эрстед стал знаменит, но история не сохранила имени остроглазого швейцара.
– Джерри, – деликатно кашлянула Галатея. – Тебе не кажется это немножко несправедливым?
– Кажется, – кивнул Джерри и продолжил: – Исследователи, которые узнали об опыте Эрстеда, удивлялись тому, что магнитное взаимодействие между объектами было направлено не друг к другу, как это было в теории гравитации Ньютона и электростатическом законе Кулона, а в сторону. Переводчики работы Эрстеда, сомневаясь в том, что они правильно поняли физика, давали рядом с переводом выдержку из оригинала статьи профессора, написанной на латыни. Результаты Эрстеда были настолько сенсационны, что о них узнали по всей Европе за считаные недели.
В том же году французский исследователь Андре-Мари Ампер обнаружил, что два провода под током отталкиваются или притягиваются друг к другу – в зависимости от направления течения тока. Он также обнаружил, что катушка из намотанного электрического провода становится сильным магнитом. Ампер также изобретает электромагнитный телеграф на основе воздействия провода с током на магнитную стрелку. В 1820 году Ампер писал: «…можно было бы, взяв столько проводников и магнитных стрелок, сколько имеется букв, и помещая каждую букву на отдельной стрелке, устроить своего рода телеграф с помощью одного вольтова столба, расположенного вдали от стрелок. Соединяя поочередно концы столба с концами соответствующих проводников, можно было бы лицу, которое наблюдало бы за буквами на стрелках, передавать сведения со всеми подробностями и через какие угодно препятствия. Если установить со стороны столба клавиатуру с буквами и производить соединения нажатием клавиш, то этот способ сообщения мог бы применяться достаточно просто и не требовал бы больше времени, чем необходимо для нажатия клавиш на одной стороне и чтения каждой буквы на другой».
Фарадея чрезвычайно увлекли опыты Эрстеда и Ампера. Изучая опыты Эрстеда, Майкл Фарадей интерпретировал их следующим образом: ток в проводе создаёт вокруг магнитное поле, на которое реагирует стрелка компаса. Но можно ли создать электрический ток из магнитного поля? Фарадей был уверен: если Эрстед превратил электричество, текущее по проводу, в магнитное поле, воздействующее на компасную стрелку, то должен быть и обратный процесс!
В 1822 году Фарадей записал в своём дневнике задачу: «Превратить магнетизм в электричество».
Примерно в это же время Дэви с другим английским физиком, Волластоном, попробовали сконструировать электрический двигатель, но потерпели неудачу. За эту сложную проблему взялся Фарадей. В 1821 году он опубликовал работу, где продемонстрировал работоспособность сразу двух возможных конструкций электродвигателя. Он научился превращать электрическую энергию в механическую!
– Наверное, это очень не понравилось Дэви и Волластону! – воскликнул Андрей.
– Да. Волластон и Дэви даже стали обвинять Фарадея в плагиате их идей.
– Но как же это возможно? – удивилась Галатея. – Ведь идеи Дэви и его приятеля не сработали, а идея Фарадея удалась! Разве можно украсть неправильную идею и сделать её правильной? Это ведь будет уже другая идея!
– История науки пестрит взаимными обвинениями в заимствовании идей – и далеко не всегда можно разобраться, кто прав, а кто – нет. Фарадею эти склоки были столь неприятны, что он попросту перестал работать в области электродинамики и переключился на другие области. Вернулся он к электрическим опытам только тогда, когда оба его оппонента уже умерли вместе со своими идеями – и никто уже не мог обвинить его в их заимствовании. Начиная с этого момента Фарадей совершает революцию в области электродинамики. В 1831 году он открывает электромагнитную индукцию – или способ превращения магнитного поля в электричество.
– Как же он это сделал? – поинтересовалась Галатея. – Из магнита получил электричество?
Джерри призадумался и быстро нашёлся:
– А я сейчас вам покажу, как он это сделал! У вас есть магнит?
– Конечно, есть! – обиделся Андрей.
Они стали копаться в большом ящике с игрушками. – Отлично! – сказал Джерри, держа в руках подковообразный магнит. – Это лучшая детская игрушка всех времён. Теперь нам нужны провода… – он продолжил рыться в ящике, – …и какой-нибудь простенький вольтметр или любой другой измеритель тока.
– Лапок от дохлых лягушек у нас нет! – сказала Галатея.
– Тогда вот этот приборчик сойдёт, – показал Джерри найденный вольтметр, которым Андрей проверял электрические схемы, собираемые им для уроков физики.
– Теперь сделаем катушку в сотню витков, а лучше – ещё больше… – и Джерри стал наматывать провод вокруг пустого пластикового стаканчика, – …и её свободные концы присоединим к вольтметру.
Пара минут – и конструкция из пластикового стаканчика, обмотанного проводом и присоединённого к вольтметру, готова.
– И это всё? – удивилась Галатея.
– Да! – подтвердил Джерри. – Теперь мы можем приступать к опытам.
Он взял в руки магнит – и опустил его конец в стаканчик. В этот момент стрелка вольтметра дёрнулась на несколько милливольтов.
– Я видела, видела! – завопила в восторге Галатея. – Появился ток!
– Острый глаз! – похвалил девочку Джерри. – Теперь вытащи магнит сама.
Галатея быстро выдернула магнит из стаканчика – и стрелка вольтметра снова дернулась, только уже в другую сторону.
– Я – настоящий Фарадей! – воскликнула Галатея.
И они начали экспериментировать с новой игрушкой, вернее – с новым научным прибором.
Джерри сказал, глядя на увлечённых детей:
– Фарадей доказал: изменение величины магнитного поля, пронизывающего замкнутый проводник, заставляет заряды в проводе двигаться, создает в нём электрический ток. Если мы соберём машину, периодически изменяющую магнитное поле, пронизывающее катушку, мы получим электрический генератор – источник тока, во многих отношениях гораздо лучший, чем батарея Вольты. С помощью этих простых предметов учёный создал прототип электрогенератора, который до сих пор служит главным источником получения электрического тока, отодвигая вольтов столб на второй план. Эти электрогенераторы, вращаемые огромными турбинами, стоят на гидроэлектростанциях, а также на тепловых и на атомных станциях по выработке электричества.
– Так вот кто придумал эти электростанции! – обрадовалась Галатея, видимо давно терзавшаяся догадками. – А электромоторы в автомобилях тоже придумал Фарадей?
– Не совсем. Он показал, как можно получать из электричества механическую энергию: в его опыте свободно висящий провод окунался в ванночку со ртутью, в середине которой был установлен магнит. Когда по проводу шёл ток, он начинал вращаться вокруг магнита. От этой конструкции до электродвигателей современного типа было очень далеко.
Многие изобретатели пытались создать практичный электродвигатель. Это удалось российскому учёному немецкого происхождения Борису Якоби. Все остальные изобретатели пытались создать электродвигатель, который был аналогом паровой машины и двигал поршень вперёд и назад. В 1834 году Якоби предложил совершенно иной электродвигатель – с вращающейся внутренней частью. Современные электромоторы устроены именно так, как двигатель Якоби. В 1839 году по Неве отправилась в плавание лодка с 14 пассажирами. Против течения реки лодку двигал мотор Якоби с мощностью в одну лошадиную силу. Впервые в истории электрический дракон послушно нёс людей на своей спине.
Но первым, кто доказал, что дракона можно заставить крутить колеса и винты, был всё-таки Фарадей. Имя Фарадея становится всемирно известным, о нём пишут газеты, академии разных стран выбирают его своим почётным членом.
– Так-так, – с удовольствием покивала головой Галатея. – Из рассыльного книжного магазина – в академики! Здорово!
– Фарадей оставался исключительно скромным человеком. Он отклонил честь быть возведённым в рыцарское достоинство и быть похороненным в Вестминстерском аббатстве, где размещались могилы английских королей и самого Ньютона. Он дважды отказался от должности председателя Королевского общества – главного научного поста Великобритании. Он был сосредоточен на науке и уклонялся от всего, что мешало ему заниматься ею.
Он тщательно записывал результаты своих опытов. Всего в течение своей жизни он провёл 30 тысяч экспериментов. Все работы по электричеству и магнетизму Фарадей посылал в Лондонское Королевское общество в течение 24 лет – и эта серия работ совершила революцию в электродинамике.
Дэви называл Фарадея своим самым великим открытием, хотя и ревновал своего ученика к его успехам.
Одно из главных достижений Фарадея, имеющее теоретический характер, состоит в том, что он ввёл в науку понятие физического поля, что стало кардинальным отличием электродинамики от теории гравитации Ньютона.
– В чём же они различаются? – удивился Андрей. – Ведь у Ньютона тоже было гравитационное поле.
– Ньютоновская теория была основана на дальнодействии. Это значит, что каждое гравитирующее тело, например Юпитер, действует на другое тело, например Сатурн, мгновенно на любом расстоянии.
– Но ведь это не так! – заёрзал Андрей. – Ничто не может действовать быстрее скорости света, а между Юпитером и Сатурном – расстояние в световые часы.
– Во времена Ньютона о конечной скорости взаимодействия никто не знал. Поэтому Ньютон исходил из бесконечной или мгновенной скорости передачи гравитационного взаимодействия. Так как его теория работала практически всегда хорошо, то такое мнение сохранилось до начала XX века, пока Эйнштейн не построил свою теорию гравитации, где скорость распространения гравитационного поля была ограничена скоростью света.
Для учёных XIX века пространство между гравитирующими телами было пустым. Для Фарадея пространство между зарядами и магнитами было заполнено полем или средой с особыми нитями – силовыми линиями. В электродинамике не было мгновенного взаимодействия между зарядами: один заряд воздействовал на поле, оно менялось – и это изменение чувствовал другой заряд. Электромагнитное поле стало, согласно Фарадею, переносчиком взаимодействия между зарядами – и эта концепция явилась основой современной физики.
С помощью своих опытов Майкл Фарадей открыл основные законы электродинамики и создал первые образцы электрического двигателя, электрогенератора и трансформатора. Тем самым он заложил прочный фундамент нашей современной электрической цивилизации.
Член парламента Гладстоун, будущий премьер-министр Великобритании, спросил Фарадея:
– Чем же так важно это ваше электричество?
– Скоро вы будете обкладывать его налогами, – ответил Фарадей.
Максвелл был великим физиком-теоретиком: он взял законы Фарадея и превратил их в элегантные математические законы электродинамики, которые с тех пор носят его имя. Он послал свою работу Фарадею. Тот сразу откликнулся: «Мой дорогой сэр, я получил Вашу статью и очень благодарен Вам за неё. Не хочу сказать, что благодарю Вас за то, что Вами сказано относительно „силовых линий“, поскольку я знаю, что Вы сделали это в интересах философской правды; но Вы должны также предполагать, что эта работа не только приятна мне, но и даёт мне стимул к дальнейшим размышлениям. Я поначалу испугался, увидев, какая мощная сила математики приложена к предмету, а затем удивился тому, насколько хорошо предмет её выдержал…»
Из-за напряжённых исследований, которые часто были связаны с вредными веществами, например со ртутью, здоровье Фарадея пошатнулось – и он больше не смог работать. Учёный остался практически без средств. Нехотя, лишь под воздействием общественного мнения, премьер-министр выписал небольшую пенсию Фарадею, которая и стала основным источником его существования в старости.
– Безобразие! – возмутилась Галатея. – Учёный, который столько сделал для людей и для своей страны, остался нищим.
Джерри вздохнул:
– Это обычная история жизни великих людей. Для Фарадея она закончилась относительно благополучно: он получил от королевы в подарок дом возле одного из королевских дворцов. В этом доме Майкл Фарадей и прожил свою старость со своей любимой супругой Сарой. Сейчас там музей Фарадея.
Жан-Батист Дюма, французский химик и политик, так отозвался о личности Майкла Фарадея: «Всякий из знавших его – я твердо убеждён – желал бы только приблизиться к тому нравственному совершенству, которое, по-видимому, было дано Фарадею от рождения. Это была какая-то, на него одного сошедшая, благодать, в которой он почерпал силы для своей кипучей деятельности, будучи одновременно горячим проповедником истины, неутомимым художником, человеком, исполненным радушия и весёлости, в высшей степени гуманным и мягким в частной жизни… Я не знал человека, который был бы более достоин любви и уважения, чем он, и утрата которого стоила бы более искреннего сожаления».
Герман Гельмгольц, великий немецкий физик, сказал: «До тех пор, пока люди пользуются благами электричества, они всегда будут с благодарностью вспоминать имя Фарадея».
Альберт Эйнштейн, самый известный физик XX века, считал: «Со времени обоснования теоретической физики Ньютоном наибольшие изменения в её теоретических основах, другими словами в нашем представлении о структуре реальности, были достигнуты благодаря исследованиям электромагнитных явлений Фарадеем и Максвеллом». В кабинете Эйнштейна всегда висели три портрета этих людей: Ньютона, Фарадея и Максвелла. Эйнштейн писал про Фарадея: «…надо иметь могучий дар научного предвидения, чтобы распознать, что в описании электрических явлений не заряды и не частицы описывают суть явлений, а скорее пространство между зарядами и частицами».
Фарадей входит в десятку, а может быть в пятёрку, самых влиятельных учёных в истории, но он единственный из них, который не получил формального образования, оказался самоучкой. В этом смысле Фарадей уникален.
Андрей спросил:
– XVIII век – век электростатики, XIX век – век электродинамики. А чем стал XX век? Ведь вся электрическая наука уже была создана к его началу.
Джерри ответил:
– Благодаря трудам Франклина и Вольты, Фарадея и Максвелла, а также многих других учёных люди изучили характер электрического дракона, измерили его силу, узнали его слабости. После этого на арену выступили инженеры и изобретатели, которые заставили дракона работать на людей и стали конструировать различные устройства. XX век стал веком электрических машин. Но это уже совсем другая история.
Примечания для любопытных
Майкл Фарадей (1791–1867) – великий английский физик-экспериментатор и химик. Открыл основные законы электродинамики и создал первые образцы электрического двигателя, электрогенератора и трансформатора. Ввёл в науку понятие физического поля. В его честь названы лунный кратер и единица измерения электрической ёмкости – фарад.
Ханс Христиан Эрстед (1777–1851) – выдающийся датский физик, исследователь электромагнетизма. Открыл в 1820 году влияние провода с током на стрелку компаса. В его честь названа единица напряжённости магнитного поля – эрстед.
Андре-Мари Ампер (1775–1836) – выдающийся французский учёный, открывшие важные законы электромагнетизма, в частности взаимное влияние проводников с током. В его честь названа единица силы электрического тока – ампер.
Уильям Волластон (1766–1828) – видный английский физик и химик, открывший новые металлы палладий и родий и впервые получивший в чистом виде платину, что позволило создать платиновую посуду для получения серной кислоты и других едких веществ. Волластон хранил в секрете рецепт получения платины до самой смерти.
Джеймс Максвелл (1831–1879) – великий шотландский учёный, создатель современной теории электродинамики, уравнения которой носят имя Максвелла. Предсказал существование электромагнитных волн.
Жан-Батист Дюма (1800–1884) – видный французский химик и политик.
Герман Гельмгольц (1821–1894) – выдающийся немецкий физик и физиолог. Один из открывателей закона сохранения энергии.
Альберт Эйнштейн (1879–1955) – великий учёный, физик-теоретик, создатель специальной и общей теорий относительности и ряда других теорий. Лауреат Нобелевской премии (1921).
Исаак Ньютон (1643–1727) – великий английский физик, математик и астроном. Один из создателей классической физики.
Борис Семёнович Якоби (1801–1874) – выдающийся российский учёный немецкого происхождения. Создатель первого электродвигателя с вращающимся якорем (1834), а также первого в мире телеграфа, печатающего буквы (1850).