bannerbannerbanner
Происхождение жизни. От туманности до клетки

Михаил Никитин
Происхождение жизни. От туманности до клетки

Полная версия

Образование планет земной группы

После того как во внутренней части Солнечной системы остается около 100 планетных зародышей, их дальнейший рост замедляется, так как из-за их малого числа вероятность столкновений сильно снижается. Постепенно взаимное притяжение зародышей искажает их орбиты, и столкновения все же происходят. Несмотря на большие скорости столкновения, превышающие 10 км/с, зародыши объединяются благодаря гравитации. Во всех численных моделях этого процесса в течение 50–100 млн лет из зародышей образуются от трех до пяти планет с размерами от Марса до Земли и устойчивыми орбитами.

В районе пояса астероидов исходно находятся планетные зародыши общей массой до двух масс Земли, однако формирования планет из них не происходит из-за влияния Юпитера. Те зародыши, которые оказались с ним в орбитальном резонансе, быстро переходят на все более вытянутые эллиптические орбиты и либо врезаются в формирующиеся внутренние планеты, либо проходят вблизи Юпитера и выбрасываются его тяготением за пределы Солнечной системы. Поскольку орбиты зародышей постоянно меняются из-за взаимодействия друг с другом, в резонансе с Юпитером рано или поздно оказывается большинство из них. Кроме того, из-за вытянутой формы орбит столкновения планетных зародышей в этом районе происходят на очень больших скоростях, и образуется много мелких обломков. В итоге за 100 млн лет в районе пояса астероидов остается около 1 % исходной массы в виде небольших тел на эллиптических орбитах, заметно наклоненных к плоскости эклиптики.

Происхождение Луны и спутников Марса

Теория происхождения Луны должна объяснять несколько ключевых фактов. Во-первых, система Земля – Луна обладает большим моментом импульса, из которого основная часть приходится на орбитальное движение Луны. Во-вторых, породы Луны по химическому составу похожи на земную мантию, но в них практически нет воды, азота, инертных газов и других летучих веществ. Содержание умеренно летучих элементов, таких как сера, хлор, натрий и свинец (они переходят из минералов в газ при температурах 500–700 °C), в породах Луны в несколько раз ниже по сравнению с Землей. Железное ядро Луны очень мало и составляет около 1 % ее массы (на ядро Земли приходится более 30 % массы планеты). В-третьих, изотопный состав всех элементов в лунном грунте точно такой же, как на Земле. Это очень важно, потому что по соотношениям изотопов кислорода, кремния и титана Земля, Марс и все семейства метеоритов четко отличаются друг от друга. Иначе говоря, судя по изотопному и химическому составу, похоже, что Луна – это вырванный кусок земной мантии с небольшой примесью железа, который после отделения был полностью расплавлен и лишился всех летучих веществ.

К середине XX века, пока состав Луны не был известен, в астрономии конкурировали три гипотезы ее происхождения. По одной из них Луна когда-то была самостоятельной карликовой планетой, захваченной Землей. По другой она образовалась одновременно с Землей при росте последней в центре вихря в газово-пылевом диске (эта гипотеза сейчас подтверждена для спутников планет-гигантов). По третьей центробежная сила на быстро вращающейся молодой Земле привела к отрыву фрагмента земной коры и мантии и выходу его на околоземную орбиту.

Как только на кораблях «Аполлон» и советских автоматических зондах «Луна» на Землю были доставлены образцы лунного грунта, его анализ показал, что захват отдельно сформированной Луны исключается из-за ее точного совпадения с Землей по изотопному составу. Рост Луны в газово-пылевом вихре вместе с Землей тоже исключается, потому что по гафний-вольфрамовым изотопным часам она сформировалась через 50 млн лет от начала Солнечной системы, когда газ давно рассеялся. Отрыв фрагмента Земли из-за быстрого вращения не объясняет полное расплавление Луны и требует нереалистично высокой скорости вращения – около двух часов на оборот. По современным представлениям, Луна появилась в результате масштабного столкновения Земли с другой протопланетой из выброшенных на околоземную орбиту расплавленных обломков.

Как описано выше, образование планет земной группы включало несколько десятков крупных столкновений. Многие из них проходили по касательной, что приводило к выбросу в космос большой массы обломков. Согласно изотопным часам, Луна на 50 млн лет моложе Солнечной системы, т. е. удар, породивший ее, был одним из последних в истории формирования Земли.

Численное моделирование удара, приводящего к образованию Луны (Canup, Asphaug, 2001), показало, что масса столкнувшегося тела (оно получило название Тейя) должна быть примерно равна массе Марса (в 10 раз меньше массы Земли); угол удара – от 30 до 50 градусов в зависимости от предшествующего вращения Земли; выброшенный в космос материал происходит в основном из мантий Земли и Тейи, что соответствует малому содержанию железа в Луне. Энергия удара разогревает Землю настолько, что вся ее поверхность представляет собой океан магмы, окутанный плотной и протяженной атмосферой силикатных паров, CO2 и водяного пара. Благодаря этой атмосфере изотопный состав Земли и Луны выравнивается. Обломки на околоземной орбите собираются в Луну в течение всего нескольких лет, начальная высота ее орбиты составляет 25 000–30 000 км (примерно в 15 раз меньше современной). Через 1–2 млн лет поверхность Земли охлаждается достаточно для появления первых твердых пород земной коры.

Спутники Марса – Фобос и Деймос – очень малы и ранее считались захваченными астероидами. Однако прямое измерение массы Фобоса по влиянию на орбиты космических зондов показало, что его плотность (1,8 г/см³) необычно мала для астероидов. По данным спектрального анализа, поверхность Фобоса сложена филлосиликатами – рыхлыми слоистыми минералами, обычными на поверхности Марса. Эти данные означают, что Фобос сложен материалами, выброшенными с Марса при ударах метеоритов, и в отличие от Луны его поверхность никогда не была полностью расплавлена. Возраст Фобоса пока неизвестен, не исключено, что он накапливал выбрасываемые с Марса обломки на протяжении миллиардов лет.

Эволюция системы Земля – Луна

Радиус лунной орбиты увеличивается из-за приливного взаимодействия с Землей. Момент импульса Земли передается Луне, при этом Луна отодвигается от Земли, а вращение Земли замедляется. Часть энергии вращения при этом рассеивается в тепло. Скорость передачи вращения Луне сильно зависит от приливного трения – меры сопротивления Земли приливным движениям океана и мантии.

Современные измерения при помощи лазерных дальномеров показали, что Луна отдаляется от Земли со скоростью около 3,5 см в год. Рассчитанное из этих данных приливное трение оказывается довольно большим, и получается, что возраст Луны не может превышать 1,5 млрд лет, что противоречит изотопным датировкам и другим данным. В распоряжении ученых есть также данные о скорости вращения Земли за последние 600 млн лет, полученные путем изучения суточных и годовых колец прироста ископаемых кораллов, а также подсчета слоев ритмитов – отложений морских осадков, оставленных приливно-отливными течениями. Эти данные показывают, что темпы замедления вращения Земли колебались, отличаясь в несколько раз в разные эпохи. Колебания связаны с изменением расположения материков и океанов. Мелководные моря тормозят приливную волну сильнее, чем глубокие океаны. Современное расположение материков, перекрывающих экватор в трех местах, тормозит приливную волну гораздо больше, чем было, например, в палеогене – с океаном Тетис между Евразией и Африкой и без Панамского перешейка.

Самая полная последовательность ритмитов, отлагавшаяся в течение 60 лет в позднем протерозое (620 млн лет назад), известна из формаций Рейнелла и Элатина в Австралии (Williams, 2000). Она показывает, что в ту эпоху продолжительность суток составляла 21,8 часа, а радиус лунной орбиты был на 6 % меньше современного. Для более древних эпох такие отложения, к сожалению, неизвестны.

Происхождение спутников планет-гигантов

Юпитер, Сатурн и Уран обладают системой из нескольких регулярных спутников, обращающихся в плоскости экватора планеты. У Юпитера и Урана есть по четыре крупных спутника примерно равной массы, а у Сатурна – один большой (Титан), четыре поменьше (Тефия, Диона, Рея, Япет), более 20 совсем мелких спутников и кольца. Какие закономерности определяют количество, размеры и орбиты регулярных спутников?

Общей чертой всех систем регулярных спутников является их масса. Для каждой из планет-гигантов все ее спутники, вместе взятые, составляют около 0,02 % массы планеты. Более того, для Нептуна, потерявшего свои регулярные спутники после захвата Тритона, это соотношение тоже верно: масса Тритона составляет 0,025 % массы Нептуна. Масса регулярных спутников была меньше этого значения, иначе Тритон, захваченный на ретроградную орбиту, при взаимодействии с регулярными спутниками потерял бы скорость и упал на планету. Это одинаковое отношение масс спутников и планеты неожиданно, потому что планеты-гиганты имеют разный состав и разную историю роста. Сатурн и Юпитер прошли стадию лавинообразного поглощения газа с увеличением массы планеты в 5–10 раз за 1 млн лет, а в истории Урана и Нептуна такого не было.

Первое успешное численное моделирование роста спутников, в котором получились системы, очень близкие к реальным, было опубликовано в 2006 году (Canup & Ward, 2006). В моделировании получился такой сценарий: вокруг растущего гиганта возникает газово-пылевой диск, более плотный, чем большой диск, вращающийся вокруг Солнца. Газ в этом диске падает на планету и несет с собой пыль. Однако высокая плотность пыли и наличие в околосолнечном диске планетезималей приводят к тому, что в околопланетном диске начинают расти спутники. Уже при размерах в несколько километров торможение спутников газом становится незаметным. По мере роста более крупные спутники поглощают или выбрасывают в планету мелких собратьев, и в диске остается от четырех до пяти спутников примерно одинаковых размеров. Однако, когда спутники вырастают очень сильно, до 0,01 % массы планеты, их притяжение вызывает спиральные волны плотности в газовом диске, и взаимодействие с этими волнами приводит к тому, что спутники опять начинают терять орбитальный момент и приближаться к планете. Чем крупнее спутник, тем быстрее это происходит. Поэтому первое поколение спутников по очереди, начиная с ближайшего, падает в планету, и когда из них остается один, начинается рост следующего поколения. Этот механизм приводит к ограничению на массу системы спутников в 0,02 % массы планеты. Пока идет поглощение газа, все возникающие спутники неизбежно поглощаются планетой. За это время может родиться и погибнуть больше десяти поколений спутников. Лишь когда газ в околосолнечном диске кончается, торможение спутников прекращается, и те спутники, что дожили до этого момента, остаются с планетой на миллиарды лет. Итоговый вид системы зависит от того, в какой момент цикла роста спутников кончился газ. Если это произошло в момент расцвета поколения спутников, то их будет от четырех до пяти примерно равной массы, как у Юпитера и Урана. Если же рост остановился в тот момент, когда остался последний спутник одного поколения и начало расти следующее, то получается система Сатурна с огромным Титаном и несколькими более мелкими спутниками (все остальные спутники Сатурна, вместе взятые, в 15 раз легче Титана).

 

Отсюда следует, что если бы рост Юпитера остановился чуть раньше или позже, то у него мог возникнуть крупный спутник, в три-четыре раза массивнее Ганимеда и Титана и немного не дотягивающий до массы Марса. В других звездных системах известны более тяжелые газовые гиганты, вплоть до 10 масс Юпитера. У таких гигантов возможно появление спутников массой почти с Землю, а если они находятся на подходящем расстоянии от звезды, то на таком спутнике будет жидкая вода и атмосфера. Так что масса планеты Пандора из фильма «Аватар», обитаемого спутника газового гиганта (72 % от земной), находится у верхнего предела масс спутников, а Полифем, вокруг которого она обращается, должен быть гораздо массивнее Юпитера.

Дальше авторы расширили свою модель и вычислили происхождение колец Сатурна (Canup, 2010). Большинство спутников планет-гигантов имеют смешанный силикатно-ледяной состав, и в них содержится до 30–50 % скальных пород. Однако кольца Сатурна практически чисто ледяные, и несколько его ближайших спутников (Тефия, Энцелад, Мимас и все мелкие внутренние спутники) – тоже. Мы помним, что у Титана были «братья» – два-три спутника сравнимого размера, которые начали расти одновременно с ним, но ближе к Сатурну, и были им со временем поглощены. Когда они приближались к Сатурну и переходили предел Роша, эти спутники начинали разрушаться. Сначала от них отрывались менее плотные внешние слои – ледяная кора и подледный океан. Более плотное скальное ядро держалось дольше и падало в Сатурн целиком, а вокруг планеты оставалось ледяное кольцо. Поэтому практически оно и состоит из чистого льда.

Пока газ из околосолнечного диска поступал, его падение в Сатурн быстро утаскивало туда же образующиеся кольца. Но когда приток газа прекратился и угроза падения в Сатурн миновала, кольцо от последнего распавшегося спутника осталось на орбите на миллиарды лет. Его масса была в 100–300 раз больше современной. Взаимодействие частиц кольца между собой приводила к размыванию границ кольца: часть обломков приближалась к Сатурну и в итоге падала в него, а другие отдалялись и выходили за предел Роша. Там они собирались в новые спутники, состоящие почти из чистого льда. Далее приливное взаимодействие с Сатурном поднимало их орбиты, и они освобождали место у внешнего края кольца для появления следующих спутников. По мере рассеивания кольца каждый новый спутник получался меньше предыдущего. Поэтому сначала кольцо породило 1000-километровую Тефию, потом Энцелад и Мимас с диаметрами 500 и 400 км, а затем еще более мелкие спутники. Мельчайшие из этих спутников, 20-километровый Пан и 7-километровый Дафнис, могут быть совсем молодыми – их возраст может составлять менее 10 млн лет.

Нерешенные вопросы в моделях происхождении планет

Хотя многие особенности строения Солнечной системы хорошо описываются моделями происхождения, которые были кратко рассмотрены выше, есть и несколько серьезных нерешенных вопросов. Вот основные из них:

• при образовании планет земной группы из зародышей орбиты планет в моделях получаются более вытянутыми и наклонными, чем в реальности;

• Марс в моделях оказывается крупнее, чем в реальности, часто – самой крупной планетой земной группы;

• осевое вращение планет земной группы определяется случайными событиями столкновения планетных зародышей, и в моделях оси вращения планет ориентированы случайно. В реальности оси вращения Меркурия и Венеры практически перпендикулярны к плоскости орбиты, а Земли и Марса – отклоняются от перпендикуляра не более чем на 30 градусов. Кроме того, реальное осевое вращение Меркурия и Венеры необъяснимо медленное;

• при образовании планет-гигантов начало поглощения газа (который, как мы помним, вращается со скоростью меньше орбитальной) должно приводить к быстрому (в течение тысяч лет) приближению планеты к Солнцу, которое может остановиться только в свободной от газа ближней окрестности Солнца, т. е. внутри орбиты Меркурия;

• в районе орбиты Нептуна не должно было быть достаточно материала для формирования планеты такой массы.

Первое затруднение связано с ограничениями численного моделирования. Чтобы вычисления заняли разумное время, приходится уменьшать число моделируемых объектов, при этом из рассмотрения выпадают мелкие планетезимали и обломки, образующиеся при столкновении планетных зародышей. Масса этих мелких тел хотя и меньше, чем масса моделируемых планетных зародышей, но сравнима (различие, по разным оценкам, составляет от двух до пяти раз). Взаимодействие растущих планет с мелкими телами в среднем приводит к скруглению и уменьшению наклонения орбит планет, а мелкие тела при этом выбрасываются в пояс астероидов.

Причины различия массы Марса между моделями и реальностью пока непонятны. Историю осевого вращения планет мы вскоре рассмотрим. А два последних расхождения между моделями формирования планет и реальностью получили блестящее объяснение в рамках так называемой модели из Ниццы, названной по месту работы ее авторов, опубликованной в трех статьях в журнале Nature (Gomes et al., 2005; Tsiganis et al., 2005; Morbidelli et al., 2005). Эта модель объясняет и другие особенности Солнечной системы – количество и параметры орбит нерегулярных спутников планет-гигантов, орбиты объектов пояса Койпера, комет, астероидов-троянцев, а также «позднюю тяжелую бомбардировку» через резонансные взаимодействия Юпитера и Сатурна в первый миллиард лет существования Солнечной системы.

Осевое вращение планет земной группы и особенности Венеры и Меркурия

Вращение планет-гигантов имеет однозначное происхождение: оно определяется в основном вращением падавшего в них газа в период лавинообразного накопления, которое, в свою очередь, связано с исходным вращением протопланетного диска. Поэтому Юпитер и Сатурн вращаются в одну сторону с периодом около 10 часов. Периоды вращения большинства крупных астероидов тоже близки к этому значению, и происхождение этого вращения аналогичное – из газового вихря, в центре которого росла планетезималь (Pravec, Harris и Michalowski, 2002). Плохо понятно происхождение вращения Урана и Нептуна – их периоды практически равны и составляют около 16 часов, но ось вращения Урана лежит почти в плоскости его орбиты. Вращение планет земной группы при их образовании из планетезималей и планетных зародышей должно было сильно и непредсказуемо измениться при косых столкновениях планетных зародышей. Наклоны осей вращения планет в итоге должны были стать случайными, периоды вращения – тоже, в пределах от нескольких часов до нескольких суток, со средним значением примерно тех же 10 часов. Однако из четырех планет земной группы две (Земля и Марс) имеют наклоны в пределах 30 градусов и периоды вращения около 23–25 часов, а Венера и Меркурий – малые наклоны и огромные периоды вращения 243 и 59 суток. Хуже того, Венера вращается в обратную сторону. Теоретически Венера могла получить обратное вращение за счет удачных направлений скользящих ударов в процессе образования, но ось вращения тогда была бы направлена куда попало.

В случае Земли на основе закона сохранения момента импульса можно рассчитать, что сразу после образования Луны на орбите высотой 25 000–30 000 км период вращения Земли должен был быть около шести часов. Это лучше согласуется со «средним по системе» 10-часовым периодом вращения. У Марса подобных тормозящих спутников нет, Фобос немного ускоряет осевое вращение Марса, но его влияние пренебрежимо мало. С Венерой и Меркурием же ситуация совершенно непонятная.

Возможно, их медленное вращение – это результат приливного торможения? Но обе планеты не имеют спутников, а приливное торможение Солнца вроде бы недостаточно сильно. Есть, однако, старая, еще XIX века, гипотеза, что Меркурий когда-то в древности был спутником Венеры. Так как его масса в пять раз больше массы Луны, то и приливные эффекты должны быть мощнее. Численное моделирование системы Венера – Меркурий (Van Flandern, Harrington, 1976) показывает, что при сравнимом с Землей приливном торможении Венеры Меркурий должен был за 0,5–1,5 млрд лет отдалиться от Венеры на расстояние около 450 000 км и перейти на эллиптическую орбиту вокруг Солнца. При этом период осевого вращения Меркурия к моменту расставания с Венерой должен был составлять около 40 суток, период вращения Венеры – меньше, порядка 20 суток. Опасных сближений Меркурия с Венерой в дальнейшем не происходит. Последующее замедление вращения Меркурия и скругление орбиты объясняется приливным взаимодействием с Солнцем, однако эксцентриситет (мера вытянутости) его орбиты остается самой большой из всех планет.

Гипотеза о Меркурии как о бывшем спутнике Венеры объясняет сильную потерю вращения этими планетами и вытянутость орбиты Меркурия, но вызывает другие сложные вопросы. Например, орбита Меркурия после расставания с Венерой оказывается гораздо больше, чем в реальности, и нет никаких причин для уменьшения ее размеров. Непонятно, как могла образоваться система Венера – Меркурий. Меркурий слишком велик и, главное, слишком богат железом, чтобы, подобно Луне, сформироваться из обломков, выброшенных при косом столкновении планетного зародыша с Венерой. Возможно, если удар был совсем скользящим, то планетный зародыш полетел дальше, оставив на Венере часть своей силикатной мантии, но в таком случае он должен был бы упасть на планету окончательно на следующем обороте. Условия для захвата спутника при скользящем столкновении пока не удалось подобрать.

Другое возможное объяснение изменения осей вращения планет – их слабые приливные взаимодействия друг с другом. Расчеты этих взаимодействий (Laskar и Robutel, 1993) показывают, что в широком диапазоне периодов вращения (приблизительно от 100 до 400 часов для Меркурия и от 20 до 100 часов для Венеры) положение оси вращения испытывает хаотические колебания на промежутках времени в миллионы лет, при этом наклон оси может изменяться от 0 до 90 градусов. Следовательно, когда периоды вращения Меркурия и Венеры проходили эти диапазоны, положение их осей изменилось и стерло все следы исходного положения. Когда приливное трение Солнца затормозило их вращение сильнее и вывело из диапазона неустойчивости, наклоны осей Меркурия и Венеры перестали изменяться и застыли на современных значениях.

Для Марса аналогичные хаотические колебания наклонения от 0 до примерно 60 градусов должны происходить и при его современном периоде вращения (24,5 часа), и мы не видим их только из-за большой длительности. Впрочем, свидетельства этих колебаний могут быть найдены при изучении геологии и климата Марса. Земля формально тоже находится в зоне неустойчивости, но наличие Луны подавляет колебания наклона земной оси, благодаря чему климат Земли на протяжении миллиардов лет был более устойчив, чем климат прочих планет.

Чрезвычайно медленное обратное вращение Венеры пока не нашло окончательного объяснения. Не исключено, что причиной его послужило взаимодействие гравитационных и тепловых приливов, действующих со стороны Солнца на очень массивную атмосферу Венеры.

1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30  31  32  33 
Рейтинг@Mail.ru