Витамины – незаменимые составляющие обменных процессов, и недостаток всего одного витамина может сказаться на производстве клеток крови.
Витамин В12 – следующий по значимости микроэлемент для системы кроветворения после железа. При дефиците витамина В12 нарушается привычный метаболизм и синтез ДНК, в связи с чем кроветворные клетки перестают активно делиться и созревать. В результате в костном мозге нарушается кроветворение и клетки остаются на ранних стадиях развития.
В отличие от других витаминов группы В витамин В12 не синтезируется растениями. Он продуцируется многими бактериями и некоторыми видами плесневых грибов, но, так как мы их не едим, источником поступления витамина В12 в наш организм являются только продукты животного происхождения: печень, почки, мышцы, яйца, сыр, молоко.
С пищей человек получает в среднем от 5 до 15 мкг витамина В12 ежедневно. Общее содержание этого витамина в организме человека – 3‒4 мг, из них около половины находится в печени. Запасы в печени способны обеспечить физиологические потребности организма в течение 3‒5 лет после прекращения поступления витамина. Ежедневная потеря витамина в норме компенсируется поступлением с пищей.
Фолиевая кислота – последний важный элемент для кроветворения. Она синтезируется высшими растениями и микроорганизмами. Наибольшее количество фолиевой кислоты содержится в зеленых овощах, дрожжах, в печени и почках животных.
Основные источники кислоты в нашем с вами меню – овощи, фрукты, зерновые и молочные продукты. Фолиевая кислота обладает высокой биодоступностью: усваивается около 40–70 %, однако она сильно разрушается при приготовлении пищи. Рекомендуемая ежедневная норма потребления для взрослых – 300–600 мкг.
Фолиевая кислота всасывается в тощей кишке. Главное депо фолиевой кислоты – печень. В клетках печени она находится в неактивном состоянии и переходит в активную форму по мере метаболических потребностей клеток.
В отличие от витамина В12 запасы фолиевой кислоты в организме невелики, и при исключении ее из пищи резерв истощается уже через 3–4 недели.
Производные фолиевой кислоты, так же как и витамина В12, принимают непосредственное участие в делении клеток при кроветворении, так что при дефиците фолиевой кислоты развивается мегалобластная анемия, о которой мы поговорим в отдельной главе.
Кроме того, при ее дефиците в организме накапливается токсичная аминокислота гомоцистеин, что приводит к риску развития тромбозов, самые опасные из которых – инсульт или инфаркт миокарда.
У человеческого организма, как и у любого грамотно спроектированного космического корабля, есть несколько степеней защиты от повреждений. Давайте поговорим про жизнеугрожающее повреждение – кровотечение. Ему противостоит аварийная система, которая на языке медицины называется гемостаз.
Это важный механизм защиты, обеспечивающий целостность системы циркуляции крови. Ключевыми функциями системы гемостаза являются сохранение жидкого состояния крови и в то же время предупреждение и остановка кровотечения.
При повреждении любого корабля главная задача команды – залатать образовавшуюся пробоину и не допустить дальнейшего поступления забортной воды (или разгерметизации, если мы в космосе). Так и человеческий организм бросает все свои физиологические ресурсы к месту кровотечения, чтобы не допустить потери жизненно важной жидкости – крови.
Первая реакция организма, развивающаяся в течение нескольких секунд после нарушения целостности сосудистой стенки, – рефлекторное сокращение поврежденного кровеносного сосуда. Затем свободные края раны вокруг «пробоины» как бы вворачиваются внутрь, в результате чего кровоток в области повреждения почти прекращается или замедляется и в этом месте возникает турбулентность (то есть кровь начинает двигаться «хаотичными волнами»).
Далее к «обнажившимся» стенкам поврежденного сосуда первым делом прилипают и склеиваются между собой тромбоциты (два этих процесса на языке физиологии называются «адгезия» и «агрегация» соответственно). В результате происходит образование агрегатов тромбоцитов и формируется «белый тромб». Все это занимает от двух до пяти минут.
Параллельно с этим запускается коагуляция, или непосредственно свертывание крови. Процесс свертывания крови регулируется целым рядом факторов свертывания крови: всего насчитывается 13 факторов, регулирующих состояние плазмы, и 22 «регулировщика» тромбоцитов. Только представьте: 35 различных веществ направляются к месту аварии, чтобы дать свои ценные указания, как остановить кровотечение. Неудивительно, что наши представления о механизмах свертывания непрерывно эволюционируют.
Согласно клеточной теории, выдвинутой в 2001 году, начинается все это действо с запуска в месте повреждения сосудистой стенки каскада образования и активации факторов, один из которых мигрирует в кровь и связывается с тромбоцитами на месте «аварии», а два других расщепляют содержащийся в крови белок протромбин до тромбина в небольших, чисто инициирующих количествах. В результате происходит активация тромбоцитов, на поверхности которых начинают вырабатываться другие факторы свертывания, формирующие протромбиназный комплекс, и начинается лавинообразное нарастание выработки тромбина («тромбиновый взрыв»), который расщепляет фибриноген – белок, который, как мы уже знаем, содержится в плазме. Образующийся при этом фибрин-мономер формирует в ходе полимеризации нерастворимые нити фибрина, которые, «вулканизируясь» (когда химические связи сшивают нити в трехмерную сеть), удерживают пробку, созданную тромбоцитами. Так образуется фибриновый сгусток, или «красный тромб».
После полноценного ремонта сосудистой стенки запускается обратный процесс, который называется фибринолиз: тромб и фибрин начинают постепенно растворяться. Если бы не этот процесс, мы бы всю жизнь хранили на себе темно-красные следы ссадин, полученных в детстве.
Описывать здесь целиком весь каскадно-перекрестный механизм свертывания и противосвертывания крови вряд ли имеет смысл, потому что в нем очень сложно разобраться человеку далекому от биохимии.
При нарушении физиологического гемостаза или дефиците одного из факторов в организме развиваются патологические состояния и болезни, которые иногда бывают наследственными. И об этом вы узнаете в следующих главах.
Теплое место, но улицы ждут
Отпечатков наших ног.
Звездная пыль на сапогах.
Мягкое кресло, клетчатый плед,
Не нажатый вовремя курок.
Солнечный день в ослепительных снах.
Группа крови на рукаве,
Мой порядковый номер на рукаве.
Пожелай мне удачи в бою,
Пожелай мне:
Не остаться в этой траве,
Не остаться в этой траве.
Пожелай мне удачи,
Пожелай мне удачи!
Виктор Цой. Группа крови
Читателю, конечно же, хорошо знакомы эти строки. И лидер группы «Кино» отразил в своей песне реальную практику: действительно, в униформе многих армий мира предусмотрена специальная нашивка, на которой указывается группа крови и резус-фактор. Хотя занудные критиканы не упустили случай придраться к словам песни, ворча, что группу крови не указывают на форме в тех местах, которые в ходе боевых действий могут быть повреждены (в том числе и на рукаве, так как есть риск лишиться руки), поэтому чаще всего она нашивается на грудь. Некоторые даже делают татуировки на груди.
Сведения о группе крови раненого военнослужащего, которые врач или санитар может легко узнать по его нашивке, очень важны для спасения жизни: при большой кровопотере крайне важно как можно быстрее определить группу крови для переливания. Если влить по ошибке большое количество крови не той группы или резус-фактора, то реципиент может и умереть. Так что, да, группа крови на груди увеличивает шансы «не остаться в этой траве».
А вот многих первых участников опытов по переливанию крови удача явно обошла стороной. Это и понятно: тогдашние экспериментаторы не видели разницы даже между человеческой кровью и кровью животных. В 1666 году английский анатом Ричард Лоуэр (1631‒1691) успешно перелил кровь одной собаки другой. В 1667 году профессор философии и личный врач короля Людовика XIV Жан-Батист Дени (1643‒1704) вместе с хирургом Полем Эммерезом (?‒1690) успешно перелили кровь ягнят двоим больным. Надо сказать, что тем, кто выжил в ходе этих экспериментов, просто повезло, что им влили небольшие дозы овечьей крови. Следующие двое подопытных оказались не столь везучими, и после смерти одного из них, хотя и вызванной тем, что его травила мышьяком жена, подобные эксперименты во Франции запретили. Впрочем, идея продолжала жить в умах медиков. С 1818 по 1830 год британский врач Джеймс Бланделл (1790‒1878) после серии опытов на собаках выполнил десяток задокументированных переливаний крови от человека к человеку, пять из которых удались. Он опубликовал результаты своих исследований, где отмечал, что основными проблемами являются свертывание крови, воздушная эмболия и несовместимость крови в ряде случаев. И если часть проблем Бланделл смог разрешить благодаря изобретенной им аппаратуре для облегчения процедуры переливания, то причина несовместимости оставалась загадкой, а значит, переливание крови можно было применять лишь к безнадежным больным.
В России методику Бланделла успешно использовал петербургский акушер Андрей Мартынович Вольф, который спас жизнь роженице с кровотечением, перелив ей кровь ее мужа. Это случилось 20 апреля 1832 года, поэтому Национальный день донора в России приурочен к этой дате, тогда как Всемирный день донора крови отмечается 14 июня (дальше я расскажу почему). Но четыре последующие операции переливания закончились неудачей. В 1865 году в Медико-хирургической академии (так тогда называлась моя альма-матер) врач Василий Васильевич Сутугин (1839‒1900) защитил диссертацию о переливании крови, в которой предложил метод ее консервирования. Но предпринятая им попытка спасти умирающую роженицу путем переливания крови не удалась. Разгадку причины несовместимости пришлось ждать еще долго.
Сначала удалось поставить точку в вопросе об использовании крови животных для переливания человеку. В 1869 году гейдельбергский студент-медик Адольф Крейт (1847‒1921) описал агглютинацию (склеивание в комочки и выпадение в осадок) эритроцитов в крови кролика или человека при добавлении туда чужеродной сыворотки (кошки, собаки и т. д.), наблюдая реакции под микроскопом. Более широкую известность, однако, приобрели аналогичные опыты немецкого физиолога Леонарда Ландуа (1837‒1902), результаты которых были опубликованы в 1875 году. Таким образом, биохимическая видовая специфичность, связанная, как доказал Крейт, с белками сыворотки, делала невозможным использование животной крови для переливания.
Следующий ключ к решению загадки несовместимости дала микробиология, а точнее, бактериология, начавшая бурно развиваться с конца 1850-х годов и быстро добившаяся успехов в борьбе с некоторыми инфекциями путем вакцинации. Этот принцип защиты от возбудителя инфекционной болезни в 1880 году обосновал французский микробиолог Луи Пастер (1822‒1895): организм после встречи с ослабленным возбудителем (иммунизации) становится невосприимчив к высокопатогенным микробам того же вида. Пастер объяснял это тем, что при иммунизации ослабленные микробы съедают нужные им для развития питательные вещества в организме, так что при повторном заражении «агрессивные» микробы остаются на голодном пайке. Сама по себе такая идея была не нова: впервые предположение, что инфекции истощают некое вещество в организме, исключая повторное заражение, выдвинул еще в 1721 году американский священник и ученый-любитель Коттон Мэзер (1663–1728). В противовес пастеровской теории «истощения» французский ветеринар Жан-Батист Шово (1827–1917) выдвинул «ретенционную» (от латинского retentio – удержание) теорию, согласно которой при иммунизации в организме накапливаются (удерживаются) продукты метаболизма бактерий, препятствующие их размножению. Но, как показали опыты французского ветеринара Жан-Жозефа Анри Туссена (1847–1890), для иммунизации можно использовать не ослабленные, а мертвые бактериальные культуры. В 1890 году немецкий бактериолог Эмиль фон Беринг (1854‒1917), вместе со своим японским коллегой Китасато Сибасабуро (1853‒1931) проводивший опыты по заражению морских свинок дифтерией, окончательно опроверг теорию «истощения». Оказалось, что у морских свинок вырабатывается иммунитет и при действии на них токсинов (химических веществ, вырабатываемых бактериями), а не живых бактерий. И если сыворотку крови перенесших дифтерию морских свинок ввести другим, то те приобретают пассивный иммунитет. Значит, в крови переболевших появляется какой-то антитоксин, который нейтрализует дифтерийный токсин.
Химическую природу этих антитоксинов выяснили в 1891 году итальянские исследователи Гвидо Тиццони (1853‒1932) и Джузеппина Каттани (1859‒1914): изучая столбнячный антитоксин, они смогли определить, что это глобулярный белок, так что и «ретенционная» теория была окончательно похоронена. В том же году немецкий бактериолог и химик Пауль Эрлих (1854‒1915) употребил в отношении антитоксинов термин «антитело» (Antikörper), так как бактерии по-немецки в то время именовались Körper («тельца»). В 1897 году Эрлих предположил, что в организме и до попадания инфекционного агента уже присутствуют антитела в форме так называемых боковых цепей (подробнее о его теории мы расскажем в главе 28). В 1899 году венгерский микробиолог Ласло Детре (1874‒1939) ввел в научный оборот термин «антиген» для обозначения чужеродных веществ, в ответ на которые организм вырабатывает антитела. Так терминологически оформилась концепция антител и антигенов, которая удивляет всех сталкивающихся с ней в первый раз нелогичностью обозначений: против какого тела и какого гена действуют антитела и антигены?
Взаимодействие антител и антигенов вне организма может выражаться в разных формах – от нейтрализации (блокировки активного центра антигена) до преципитации (помутнения раствора из-за образования комплекса антиген‒антитело) и агглютинации. В последнем случае антитела называются агглютининами, а антигены – агглютиногенами. Открытие бактериальных агглютининов вызвало всплеск интереса к агглютининам, воздействующим на эритроциты в человеческой крови: обнаружилось, что в ряде случаев человеческая сыворотка склеивает чужие человеческие эритроциты. Однако все эти исследования исходили из того, что сывороточные агглютинины были результатом инфекционных заболеваний и являлись специфичными для конкретного заболевания.
Окончательно элементы головоломки сложились, когда в 1900 году Карл Ландштейнер (1868‒1943), ассистент директора Патолого-анатомического института при Венском университете, страстный (но тайный) поклонник детективных романов, занялся изучением реакции человеческой сыворотки крови с чужими человеческими эритроцитами. Хотя его основной обязанностью было проводить вскрытия, он не забросил свои исследования крови, которыми занимался ранее. Так что же убивало эритроциты? По всем канонам детективного жанра в итоге подозрение пало не на «гостей» (агглютинины крови, вырабатывавшиеся для борьбы с инфекцией), а на «дворецкого» (родные агглютинины крови, изначально присущие организму). То есть, возможно, специфичность присуща не только видам (кроликам нельзя перелить сыворотку кошки), но и группам особей одного вида. Такой подход изрядно облегчал задачу, не давая отвлекаться на гипотезы о бактериальных агглютининах у различных людей и диктуя простой план исследования.
Взяв образцы крови у себя и у четверых вроде бы здоровых коллег (потом круг испытуемых расширится до 29), Ландштейнер отделил сыворотку крови от эритроцитов и исследовал их поведение при смешении в 144 разных комбинациях. Оказалось, что одни смеси дают реакцию агглютинации (склеивания), а другие – нет.
Реакция при смешении плазмы крови и эритроцитов позволяла выявить разные типы антигенов, присущих эритроцитам, взятых от разных людей. Одни эритроциты обладали такими антигенами – белками на своей поверхности, что склеивались с антителами чужой плазмы и выпадали в осадок. Если бы такое происходило при реальном переливании крови, то все закончилось бы плачевно. Тогда как другие эритроциты отказывались склеиваться с антителами чужой плазмы – у них не было соответствующих антигенов. И тогда переливание могло пройти успешно.
Таким образом, группы крови определяются иммунным ответом организма на антигены (агглютиногены) чужих эритроцитов.
Исходя из результатов опытов, Ландштейнер выделил три группы крови, а через два года его сотрудники Адриано Стурли (1873‒1964) и Альфред фон Декастелло (1872‒1960) описали четвертую, правда сочтя ее каким-то странным исключением. За свое открытие в 1930 году Ландштейнер, уже работая в Рокфеллеровском институте медицинских исследований в Нью-Йорке, удостоился Нобелевской премии[4]. Кстати, это его день рождения отмечается как Всемирный день донора крови, про который я уже упоминал.
Первые три группы в статье Ландштейнера «Об агглютинативных свойствах нормальной человеческой крови», вышедшей в 1901 году, были названы А, В и С, а четвертая сначала именовалась особой группой, но в 1910 году работавшие в Гейдельбергском институте экспериментальных исследований рака Людвик Гиршфельд (1884‒1954) и Эмиль фон Дунгерн (1867‒1961) назвали эту группу АВ, а группу, которую Ландштейнер назвал С, переименовали в нулевую[5]. Такую кодировку группы крови получили по признаку отсутствия или наличия определенных антигенов на поверхности эритроцитов. В крови нулевой группы их нет, в случае группы А есть только А-антигены, группы В – лишь В-антигены, а в крови группы АВ присутствуют оба антигена.
Давайте разберем на примере группы 0(I): эритроциты этой группы не содержат агглютиногенов А и В и, следовательно, не дают реакции агглютинации ни с какими сыворотками крови человека, так как отсутствует один из компонентов этой реакции. Сыворотка же, имея оба соответствующих агглютинина α (анти-A) и β (анти-B), «отправляет в осадок» эритроциты всех прочих групп, потому что их эритроциты всегда содержат тот или иной агглютиноген. Поэтому человеку с группой крови 0(I) можно переливать только одногруппные компоненты, содержащие эритроциты, и наоборот, в экстремальных ситуациях эту группу крови можно переливать к другим, то есть обладатель такой группы крови – универсальный донор. Люди с группой АВ(IV), напротив, являются универсальными реципиентами, им можно переливать кровь любой группы, потому что у них в плазме нет агглютининов, склеивающих агглютиногены А и В, хотя сейчас все же стараются переливать только одногруппные компоненты, чтобы избежать осложнений в ряде случаев. Впрочем, и с одногруппной кровью не все так просто: у антигена А есть сильный вариант А1 (примерно в 75 % случаев), слабый вариант А2 (около 25 % случаев) и еще четыре крайне редко встречающихся слабых варианта. Слабые варианты антигена А иногда могут привести к ошибкам при определении группы крови. Варианты есть и у антигена В.
Важное значение имеет так называемый резус-фактор, открытый в 1937 году Ландштейнером и Александром Винером (1907‒1976) в ходе экспериментов на обезьянах макак-резус. Кровь обезьян, введенная кроликам, приводила к выработке у последних антител, так что иммунная кроличья сыворотка склеивала эритроциты обезьян (что неудивительно) и 85 % людей (вот это было неожиданностью). Получалось, что эритроциты 85 % людей содержат антиген (его назвали антиген D), который отсутствует в эритроцитах остальных людей с отрицательным резусом. Филип Левин (1900‒1987) и Руфус Стетсон (1886‒1967) выявили клиническую значимость этой системы двумя годами позже при изучении гемолитической желтухи новорожденных: оказалось, она возникает из-за того, что у матери и ребенка разные резус-факторы.
Системы крови не исчерпываются резус-фактором и группами крови: сам Ландштейнер (вместе с Винером и Левином) открыл еще системы MNS (1927 год) и P (1928 год), а всего на сегодняшний день их известно 43, причем многие носят несколько причудливые названия вроде «Ок», «Кидд», «Джуниор»[6]. Известно около 300 эритроцитарных антигенов, так что к этим системам крови могут добавиться новые. Да и система AB0 (по группам крови) оказалась способна преподносить сюрпризы. Дело в том, что антигены A и B на поверхности эритроцитов формируются из исходного антигена H благодаря соответствующим ферментам, выработка которых кодируется определенными генами ДНК. В случае группы крови 0(I) никакой из этих ферментов не вырабатывается из-за сбоя кодирующих генов, и имеющийся антиген H остается на поверхности эритроцитов неприкаянным, так и не превратившись в антигены A и B. Но может статься, что засбоит ген, кодирующий синтез антигена H, и тогда мы получим так называемый бомбейский феномен (люди с такой мутацией были обнаружены впервые в Бомбее в 1952 году) – группу крови, у которой нет антигенов A, B, H, но есть антитела к ним. Кровь этой группы можно переливать всем (учитывая, конечно, резус-фактор и прочие факторы), в том числе и обладателям группы 0(I), но донорами для реципиентов с «бомбейской» группой крови могут быть только обладатели такой же. К счастью, в среднем на 300 тысяч человек приходится лишь один такой случай.
Открытие групп крови сделало переливание практически безопасным, и оно быстро вошло в клиническую практику. Правда, какое-то время царил кавардак с обозначением групп крови. В 1907 году чешский врач-психиатр Ян Янский (1873‒1921) предложил нумерацию групп римскими цифрами, где группа без антигенов обозначалась единицей, с одним антигеном – соответственно двойкой (A) и тройкой (B), а с двумя антигенами – четверкой. А в США в 1910 году Уильям Мосс (1876‒1957) предложил обратную нумерацию, которую переняли и англичане, и французы.
Первая мировая война с ее внедрением в практику полевой хирургии переливания крови, требовавшей в больших количествах донорской крови, все же не привела к выработке унифицированной системы обозначений. В каждой армии были свои правила. Надо сказать, что самыми продвинутыми в плане переливания крови оказались американские экспедиционные силы: там, хоть и не додумались до нашивок, врачей снабжали ампулами с сыворотками для определения групп крови у раненых и доноров и стали первыми использовать консервированную донорскую кровь. Разнобой в обозначениях продолжался до тех пор, пока в 1937 году в Париже на съезде Международного общества переливания крови не была официально рекомендована буквенная система, которая четко указывает на наличие или отсутствие специфических антигенов. Но повсеместно систему АВ0 стали использовать с середины 1950-х годов.
А в СССР упорно продолжали придерживаться системы Янского, и эту традицию унаследовали многие постсоветские государства, в том числе и Россия, где до сих пор используется цифровая нумерация групп крови, впрочем дублируемая международной. В боевых условиях такое дублирование информации на нашивке может оказаться и полезным.
Если ограничиться основными антигенами, то можно выделить четыре группы: 0, A, B и AB – соответственно I, II, III, IV и положительный или отрицательный резус (Rh+ и Rh–), что дает восемь вариантов.
В разных регионах планеты «популярны», соответственно, разные группы крови, так как этот признак определяется наследственностью. Например, в России самая распространенная II группа крови, вслед за ней с небольшим отставанием следует I, тогда как в Великобритании в тренде I группа, а, скажем, в Калмыкии – III группа.
Наука на данный момент так и не изобрела никаких заменителей крови, которые бы могли полностью взять на себя функцию газотранспортных переносчиков, хотя такие попытки, конечно же, предпринимаются. Пока без донорской крови и ее компонентов обойтись нельзя, во всех развитых странах они используются очень широко – об этом свидетельствует наличие огромного количества банков крови и отделений переливания крови при больницах.
Метод заместительной гемокомпонентной терапии, то есть переливание донорских компонентов крови: эритроцитов, плазмы и тромбоцитов, остается востребованным и актуальным во всех областях медицины, и особенно в гематологии и онкологии. Нет ничего проще, чем восполнить дефицит какого-либо компонента донорским, но, несмотря на привлекательность этого метода, он сопряжен с определенными рисками, например с опасностью заразиться инфекцией (гепатитом или ВИЧ) или с аллергической реакцией (да-да, у одного человека может быть аллергия на кровь другого!).
Хотя всех доноров крови тестируют на инфекции, полностью этого риска избежать невозможно. По своей сути любое переливание донорских компонентов, будь то эритроциты или плазма, – мини-трансплантация органа, ведь мы помним, что кровь – это ткань и подобная процедура сродни пересадке печени или почки. Как «пересадить» всю кровь целиком, я расскажу чуть позже.
Единственная область, где синтетические препараты уже сейчас могут составить конкуренцию донорской крови, – производство некоторых конкретных компонентов плазмы крови. Так, для больных гемофилией производятся факторы свертывания (вещества, которые помогают крови сворачиваться), полученные генно-инженерными методами. Они безопаснее, чем полученные из донорской крови препараты, и очень эффективны.
Сейчас, когда вы получили общее представление о строении и работе крови и кроветворных органов, пора переходить к более подробному рассказу о том, каким образом и почему развиваются гематологические заболевания. В следующей части мы тщательно разберем каждое из них, а еще я расскажу о различных методах диагностики, лечения и о медицинских технологиях. Кроме того, мы совершим несколько экскурсов в прошлое, ознакомимся с современным состоянием гематологии, а также поразмышляем о том, что готовит нам будущее.
Но перед этим не мешало бы поговорить о некоторых предрассудках и мифах, связанных с кровью.