bannerbannerbanner
Запутанная жизнь. Как грибы меняют мир, наше сознание и наше будущее

Мерлин Шелдрейк
Запутанная жизнь. Как грибы меняют мир, наше сознание и наше будущее

Полная версия

Белые пьемонтские трюфели и другие высоко ценимые грибы, например белые, лисички и мацутаке, никогда не выращивались искусственно отчасти из-за подвижности их взаимоотношений с растениями, отчасти – из-за сложности и замысловатости их половой жизни. В нашем понимании того, как в общем и целом проходит общение между грибами, слишком много пробелов. Некоторые виды трюфелей, такие как черный перигорский, можно культивировать, однако культура выращивания трюфелей еще очень незрела – не в пример почтенному сельскохозяйственному искусству выращивать что угодно еще. Даже самым опытным удача может и не улыбнуться. На трюфельной ферме Лефевра New World Truffieres количество зачатков плодового тела, которые успешно вырастают из мицелия черного перигорского трюфеля, держится где-то в районе 30 %. В один год, не изменяя намеренно технологии выращивания, он добился 100-процентного успеха. «Мне больше ни разу не удалось повторить этот результат, – рассказывал он мне. – Не знаю, что я сделал правильно».

Чтобы успешно выращивать трюфели, нужно разбираться не только в причудах и потребностях грибов – с их своеобразными системами размножения, – но и в деревьях и бактериях, с которыми они союзничают. Более того, приходится учитывать важность тончайших изменений в почве и климате, времена года. «Это чрезвычайно интеллектуально стимулирующая область, потому что она пересекается со столькими дисциплинами, – сказал мне Ульф Бюнгтен, профессор географии в Кембридже и первый в Великобритании, кто описал образование плодового тела перигорского черного трюфеля. – Это и микробиология, и психология, и межевание земель, и сельское хозяйство, лесничество, экология, экономика и изменение климата. Все действительно нужно рассматривать в комплексе». Трюфельные микросемейства очень быстро превращаются в целые экосистемы. Наука за ними пока не успевает.

Некоторых жертв грибной химической приманки ждет монохромный исход – смерть. Среди самых впечатляющих сенсорных подвигов можно назвать те, что совершают хищные грибы, которые ловят и поедают нематод, круглых червей. На свете существуют сотни видов грибов, охотящихся на червей. Большинство из них всю свою жизнь занимаются разложением растительных веществ и охотиться на червей начинают только тогда, когда не хватает обычной пищи. Это изощренные хищники: в отличие от трюфелей, которые не прекращают источать запах с того момента, как он появился, до конца дней, грибы, поедающие нематод, производят органы для охоты на них и подходящие химические вещества только тогда, когда чувствуют, что нематоды поблизости. Если вокруг достаточно вещества, которое можно превратить в гниль, они не обращают на червей внимания, даже если те рядом. Эта практика требует от грибов – пожирателей нематод исключительной чувствительности, должной помочь ощутить присутствие червя. Все нематоды используют один и тот же класс молекул и для корректировки собственного развития, и для привлечения партнеров. А грибы используют эти химические вещества, чтобы шпионить за своими жертвами.

Методы, которые грибы используют для охоты на нематод, разнообразны, но стабильно вероломны. Это привычка, которую грибные династии формировали независимо: все пришли к одним и тем же выводам, но разными путями. Некоторые грибы выращивают липучие сети или ответвления, к которым нематоды прилипают. Другие используют механические орудия: создают петли из гиф, которые надуваются за десятую долю секунды при прикосновении к ним, и жертва оказывается в ловушке. Третьи, в том числе и обыкновенные вешенки, создают стебельки из гиф, на концах которых повисает капелька с ядом, парализующим червей, давая гифе время пройти через ротовое отверстие и переварить их изнутри. Четвертые производят споры, которые проплывают сквозь почву, химически притягиваясь к нематодам, прикрепляясь к ним при соприкосновении. Закрепившись, споры начинают прорастать, и гриб «треножит» червя специальными гифами, которые условно можно назвать стрекательными.

Охота на червей у всех проходит по-разному: разные особи одного грибного вида могут реагировать на червей по-своему – они создают разные типы ловушек или размещают их по-своему. Один вид – Arthobotrys oligospora – ведет себя как «нормальный», разлагающий органику гриб, когда органики много, но, если возникает необходимость, может устраивать нематодные засады на своем мицелии. Он также может обвивать мицелий других грибов, моря их голодом, или выращивать специальные структуры для проникновения в корни растений, за счет которых питается. Как он выбирает опцию, остается неизвестным.

Что мы можем сказать об общении грибов? В Италии, когда мы стояли, сгрудившись, у норы на земляном склоне, заглядывая внутрь ее, я пытался представить эту сцену с точки зрения гриба. В возбуждении Парид предложил лирическую интерпретацию: «Трюфель и его дерево – как любовники или как муж и жена, – тихо и проникновенно проговорил он. – Если нити разорваны, назад пути нет. Связь потеряна навсегда. Трюфель был рожден из корня этого дерева, защищенного дикой розой. – Он указал на колючие заросли. – Он лежал внутри, защищенный шипами, как Спящая красавица, дожидаясь поцелуя собаки».

В академической среде преобладает мнение о том, что никакие существа, кроме людей, не способны на разумные и осмысленные взаимоотношения и что им ошибочно приписывают это. Трюфели не разговаривают, они некрасноречивы. Как и многие животные и растения, от которых зависит их существование, они реагируют на окружающий их мир бездумно, автоматически, рутинно – только бы увеличить свои шансы выжить. Разительным контрастом предстает полная ярких впечатлений человеческая жизнь, в которой количество стимулирующих воздействий плавно перетекает в качество ощущения; в которой стимулы вызывают эмоции; в которой мы реагируем эмоционально.

Пожираемый грибом круглый червь


Я стоял, балансируя на землистом склоне, держа нос над пахучим грибным комком. Как я ни старался представить себе трюфель простым биороботом, в моем воображении он все время оживал.

Когда стараешься понять поведение любых других организмов, отличных от людей, легко впасть в одну из двух крайностей: либо считать их неодушевленными биороботами, либо приписывать им все богатство человеческого опыта. Если исходить из того, что грибы – лишь организмы, лишенные мозга и всякого примитивного устройства, необходимого, чтобы испытывать самые простые «ощущения», тогда их действия являются автоматическими реакциями на ряд биохимических стимулов. И тем не менее мицелий трюфелей, как и мицелий других видов грибов, испытывает воздействие окружающей среды и активно реагирует на него, причем непредсказуемым образом. Его гифы провоцируют химическое воздействие, они на него отвечают и приходят в возбуждение. Именно способность расшифровывать химические сигналы, испускаемые другими организмами, позволяет грибам устанавливать целый ряд сложных отношений с деревьями, кормиться за счет питательных веществ в почве, вступать в половые контакты, охотиться и отражать нападения.

Антропоморфизм обычно рассматривается как иллюзия, которая, как какой-то волдырь, возникает в слабых человеческих умах – темных, недисциплинированных, незакаленных. На то есть серьезные причины. Когда мы «очеловечиваем» мир, мы можем помешать себе понять жизнь других существ и организмов в их собственном контексте. Но есть ли то, что мы можем пропустить, проглядеть или забыть заметить, занимая подобную позицию?

Биолог Робин Уолл Криммерер, член Нации граждан потаватоми, отмечает, что язык индейцев потаватоми изобилует глагольными формами, одушевляющими феномены, лежащие вне мира человека. Слово, обозначающее холм, например, является глаголом – «быть холмом». Холмы постоянно «холмятся», это «активные, живые» холмы. Вооружась такой «одушевляющей грамматикой», можно говорить о жизни других организмов, не низводя их до объектов неживой природы, но и не заимствуя традиционные гуманистические концепции. В английском языке, наоборот, пишет Криммерер, нельзя признать «простого существования другого живого существа». Если вы не относитесь к человеческому роду, вас тут же записывают в категорию «неодушевленных предметов»: «нечто», «вещь». Пожелай вы одолжить «человеческую» концепцию, чтобы определить суть стороннего организма, вы попадете в ловушку антропоморфизма. Если вы используете понятие «нечто», вы начинаете воспринимать эти организмы как неодушевленные и попадаете в другую западню.

Биологические реалии немонохромны. Почему описания и сравнения, которые мы используем при познании мира – наши инструменты, – должны быть такими примитивными? Разве нельзя расширить некоторые из привычных для нас концепций, таких как «разговаривать», «слышать» и «понимать»? Например, представить, что «говорить» можно не только ртом, «слышать» – не только ушами, «понимать» и «интерпретировать» – не только с помощью нервной системы. Способны ли мы на это, не подавляя иные формы жизни предубеждением и недомолвками?

Даниэль завернул трюфель и, осторожно засыпав дыру, отпустил переплетенные колючие ветки ежевики, прикрывшие разрытую землю. Парид объяснил, что так не будут нарушены отношения между грибом и корнями дерева. Даниэль сказал, что так другие охотники за трюфелями не пойдут по нашим следам. Мы пошли обратно по полю. Запах трюфеля ослабел, когда мы добрались до машины, и стал еще менее выраженным, когда мы вернулись в комнату с весами. Мне стало интересно, что останется к тому времени, когда его натрут и посыпят тарелку посетителя ресторана в Лос-Анджелесе.

Несколько месяцев спустя я отправился на охоту за трюфелями по лесистым холмам в окрестностях Юджина, штат Орегон, с Лефевром и его итальянской водяной собакой по имени Данте, которого Лефевр зовет «многоплановым охотником за трюфелями».

Собаки-добытчики Кайка и Дьявол натасканы искать большое количество видов грибов; «многоплановые охотники» обучены отыскивать все, что интересно пахнет. И это позволяет им находить виды трюфелей, запаха которых они не знают. И вот Данте гоняется за тем, что вовсе и не трюфель, – пахучими многоножками, например. Но он также откопал четыре еще не описанных вида трюфелей, и в этом нет ничего необычного. Майк Кастеллано, известный эксперт по трюфелям, в честь которого был назван один из видов, описал два новых порядка, более двух дюжин новых родов и примерно две сотни новых видов трюфелей. По его словам, собирая трюфели в Калифорнии, он регулярно находит новые виды, что служит напоминанием о том, сколько еще остается неизведанным.

 

Пока мы карабкались вверх, продираясь сквозь Дугласовы пихты и папоротники-нефролеписы, Лефевр рассказывал мне, что люди веками подспудно культивируют трюфели. Трюфели процветают в потревоженной людьми окружающей среде. В Европе добыча трюфелей резко упала в XX веке, когда ухоженные леса, где росли эти грибы, либо вырубались под сельское хозяйство, либо запускались и густо зарастали деревьями. Ни то, ни другое не благоприятствует разведению трюфелей. Для Лефевра возрождение культуры выращивания трюфелей очень важно, потому что это способ получить прибыльный урожай в лесистой местности и направить частный капитал на восстановление окружающей среды. Чтобы добыть трюфели, необходимо вырастить деревья. Почва – это дом для разнообразных форм жизни; нельзя культивировать трюфели, не мысля в масштабе экосистем.

Данте носился зигзагами вокруг нас, вынюхивая. Лефевр рассказал мне о теории, согласно которой манна, ниспосланная Богом идущим через пустыню израильтянам, была на самом деле пустынными трюфелями – деликатесом, который неожиданно проступает сквозь засушливые безводные почвы на большей части территории Ближнего Востока. Он поведал о безуспешных попытках вырастить неуловимый белый трюфель и о том, как плохо мы разбираемся в его отношениях с деревом, в корнях которого он живет. А я думал о разнообразных реакциях грибов на изменения в окружающей их среде и о способах, которые они изобретают, чтобы ужиться с растениями и животными, от которых зависит их существование.

Разыскивая в лесу трюфели, я поймал себя на том, что снова подыскиваю слова, чтобы описать жизнь этих замечательных организмов. Парфюмеры и дегустаторы используют метафоры, чтобы выразить вербально различие в ароматах. Химическое вещество зовут «скошенной травой», «влажным манго», «грейпфрутом» и «разгоряченными лошадьми». Без этих сравнений представить себе аромат было бы невозможно. Цис-3-гексенол (спирт листьев) пахнет свежескошенной травой. У оксана аромат влажного манго. В запахе гардамида сочетается запах грейпфрута и разгоряченной лошади. Это не значит, что оксан и есть влажное манго, но если бы я пронес мимо вас открытую склянку, вы бы почти наверняка узнали запах. Выбор нужных слов для описания запаха включает суждение и предвзятость. Наши описания искажают и деформируют природу явлений, но иногда у нас нет другого выбора – только сравнить абстрактный феномен с объектом предметного мира. Быть может, то же самое происходит, когда мы говорим об иных, не принадлежащих миру людей организмах?

Сводится все к тому, что не так-то много других вариантов существует. У грибов, вероятно, нет мозга, однако среда провоцирует их на принятие множества решений. Их непостоянное, переменчивое окружение вынуждает их импровизировать. Попытки импровизации могут привести к ошибкам. Каждый раз, когда гифы настраиваются на призыв других гиф внутри одной системы мицелия, когда возникает притяжение между гифами из отдельных мицелиевых сетей, когда появляется жизненно важное влечение между микоризной гифой и корнем растения, когда червь заглатывает капельку яда на конце гифы – каждый раз грибы активно воспринимают и интерпретируют свой мир, даже если нам и не дано понять, что значит в этом случае «воспринимать» и «интерпретировать». Возможно, не так уж и странно то, что грибы используют для самовыражения химический вокабуляр, адаптированный для других существ и организмов, будь то нематода, корень дерева, собака – охотник за трюфелями или нью-йоркский ресторатор. Иногда – как это бывает с трюфелями – эти молекулы выступают как слова химического языка, который мы способны по-своему понять. Хотя большинство будет всегда либо выше – над нашими головами, либо ниже нашего понимания – у нас под ногами.

Данте начал с яростью раскапывать землю. «Похоже на трюфель, – перевел Лефевр с языка собачьего тела. – Но он глубоко». Я спросил, тревожит ли его то, что Данте может повредить нос и лапы из-за такого неистового рытья. «О, он все время ранит подушечки, – признал Лефевр. – Я подумываю купить ему бахилы». Данте фыркал и царапал землю, но безрезультатно. «Меня огорчает, что я не могу его ничем вознаградить за усилия, когда ничего не удается добыть, – Лефевр присел и потрепал собаку по кудряшкам. – Но мне не найти лакомство, которое бы значило для него больше, чем трюфель. Трюфели превосходят все. – Он улыбнулся мне. – Бог Данте живет под землей».

2
Живые лабиринты

…Я так счастлива в шелковой влажной тьме лабиринта, и нет нити, ведущей из него.

– Элен Сиксу

Представьте, что вы одновременно можете пройти через две двери. Это немыслимо, и все же грибы поступают именно так. Когда гифы гриба доходят до развилки, им не нужно выбирать ту или иную дорогу. Они разветвляются и идут одновременно в двух направлениях.

Можно поставить на пути гиф микроскопический лабиринт и посмотреть, как они будут двигаться дальше. Встречая препятствие, они начинают ветвиться. Обойдя препятствие, кончики гифы возвращаются к первоначальному направлению своего роста. Вскоре они находят кратчайший путь к выходу, точно так же, как миксомицеты (слизевики) моего друга, которых заставили решать подобную головоломку, смогли найти кратчайший путь к выходу из лабиринта, напоминающего в плане склад магазина IKEA. Если следить за кончиками гифы, когда они исследуют пространство, то с сознанием наблюдателя происходит нечто странное. Один кончик делится на два, четыре, восемь, но все они соединяются в одной грибнице. Является ли этот организм единым или состоит из множества организмов, мне еще предстоит понять, но я вынужден признать, что существо это каким-то невероятным образом является и одним, и многими одновременно.

Наблюдать за тем, как гифа исследует лабораторный лабиринт, – занятие увлекательное, но давайте увеличим масштаб: вообразите миллионы кончиков гиф, одновременно прокладывающих путь в хаотичных лабиринтах внутри комочка земли объемом в столовую ложку. И давайте снова увеличим масштаб: представьте себе миллиарды щупалец гиф, исследующих участок леса величиной с футбольное поле.

Мицелий – это связующая ткань, живые нити, пронизывающие и соединяющие бóльшую часть мира. В школе ученики изучают анатомические атласы, каждый из которых посвящен тому или иному участку человеческого тела. На одной странице – скелет, на другой – тело как сеть кровеносных сосудов, на третьей – нервная система, на четвертой – мышцы. Если бы мы создали аналогичные схемы для экосистем, один из листов отображал бы грибной мицелий, проходящий через них. Мы увидели бы раскидистую паутину, проходящую через почву, через сернистые отложения в сотнях метров ниже поверхности океана, вдоль коралловых рифов, прорастающую через тела растений и животных, живых и мертвых, обитающую на свалках, в коврах, в половых досках, в старых библиотечных книгах, в частичках домашней пыли и в музейных полотнах старых мастеров. Согласно некоторым оценкам, если выделить мицелий, живущий в одном грамме почвы (примерно одна чайная ложка), и расположить все его нити последовательно, одну за другой, то его протяженность может составить от сотни метров до десятков километров. На практике невозможно измерить, насколько глубоко мицелий проникает сквозь структуры земли, ее системы и населяющие ее организмы, – так тесны его внутренние связи. Мицелий – это способ существования, бросающий вызов нашему воображению, ограниченному принадлежностью к животному миру.

Линн Бодди (Lynne Boddy), профессор микробиологии Кардиффского университета, несколько десятков лет изучала пищевое поведение мицелия. Ее изящные исследования показывают, какие задачи способны решать грибницы. В одном из своих экспериментов Бодди вырастила грибок, вызывающий гниение древесины, в обломке дерева. Затем она поместила этот кусок древесины в чашку Петри. Грибница распространилась от куска дерева радиально во всех направлениях, образовав пушистый белый круг. Через некоторое время растущая грибница встретила на своем пути еще один кусок дерева. Лишь небольшая часть гриба коснулась дерева, но поведение всей грибницы полностью изменилось. Грибница перестала распространяться во всех направлениях. Она прекратила распространение исследовательских частей своей сети и нарастила связи с обнаруженным объектом. Через несколько дней грибницу было не узнать. Она полностью перестроилась.

Исследовательница повторила эксперимент, но изменила условия. Она дала грибу вырасти за пределы первого куска древесины и найти путь к новому куску. Однако на этот раз, прежде чем мицелий успел перестроиться, она убрала первый кусок дерева из чашки Петри, оторвала все гифы, растущие из него, и поместила его в новую чашку. Гриб продолжил расти из первого куска дерева в направлении нового. Вероятно, мицелий обладает способностью запоминать направления, хотя мы еще не знаем, что лежит в основе этой «памяти».

Бодди – человек серьезный и сдерживает восхищение, когда рассказывает о том, на что способны грибы. Их поведение немного напоминает поведение миксомицетов (слизевиков), и она исследовала их схожими способами. Однако вместо того, чтобы смоделировать схему метрополитена Токио, Бодди создала условия, чтобы мицелий выстроил схему наиболее эффективных маршрутов между городами Великобритании. Она насыпала слой земли, придав ему очертания страны, и обозначила города кусками дерева, на которых проросли грибы (это были представители ложноопенка серно-желтого, Hypholoma fasciculare). Размер кусков дерева подбирался пропорционально населению городов, которые они обозначали. «Грибы выросли за пределы своих „городов“ и создали сеть шоссейных дорог, – рассказывала Бодди. – Можно было различить трассы М5, М4, М1, М6. Я подумала, что это здорово».

Чтобы понять, что такое грибница, можно уподобить кончики ее гиф рою или стае. Насекомые образуют рои и колонии. Множество скворцов сбивается в стаю, так же поступают сардины. Стая – это модель группового поведения. Без лидера колония муравьев может проложить кратчайший путь к источнику пищи. Колония термитов способна создавать гигантские холмы сложных архитектурных форм. И тем не менее мицелий нельзя полностью уподобить термитам, так как кончики гиф связаны друг с другом, а термитник населен множеством отдельных особей. Кончик гифы – это самое близкое понятие, к которому мы придем, если попытаемся выделить единицу мицелия, хотя и нельзя говорить о грибнице как о наборе «взрослых» гиф – в противоположность колонии термитов. Концепция мицелия двойственна, она балансирует между двумя понятиями. Если определять мицелий как сеть, то это единое и взаимосвязанное целое. А если как некоторое количество отростков гиф, то мицелий – это множество.

«Я думаю, что мы, люди, можем многому научиться у грибов, – размышляет Бодди. – Чтобы понять, как меняется дорожный поток, дорожную магистраль перекрыть нельзя, а вот отросток грибницы отсечь можно». Для решения человеческих задач исследователи начали работать с «сетевыми» организмами, такими как слизевики и грибы. Ученые, которые построили модель токийского метро с помощью слизевиков, работают над тем, чтобы использовать модель поведения слизевиков в проектировании городских транспортных сетей. Ученые лаборатории нетрадиционных вычислений в Университете Западной Англии обратились к слизевикам, чтобы вычислить наиболее эффективные пути эвакуации при пожарах в зданиях. Некоторые исследователи применяют стратегии грибов и слизевиков для построения схем передвижения в лабиринтах, решения математических задач или программирования роботов.

Лабиринты и построение сложных маршрутов – нетривиальные виды деятельности. Именно поэтому лабиринты долго использовались для оценки интеллектуальных способностей многих существ, от осьминогов и пчел до людей. Как бы то ни было, мицелий обитает в лабиринтах и хорошо «научился» решать задачки из области пространственной геометрии. Как выгоднее разместиться в среде – проблема, с которой грибы сталкиваются каждое мгновение. Чем гуще переплетение гиф, тем больше веществ проводит мицелий, но густые грибницы не слишком хорошо перемещаются на большие расстояния. «Разреженные» грибницы хорошо чувствуют себя на больших площадях, но у них меньше внутренних связей, что делает их более уязвимыми, их легче повредить. Как грибы находят компромисс, исследуя сплетенный корнями участок почвы в поисках пищи?

 

Эксперимент Бодди с двумя кусками дерева иллюстрирует типичный ход событий. Мицелий начинает разрастаться, исследуя окружающее пространство во всех направлениях. Если мы идем на поиски воды в пустыне, мы вынуждены выбирать только одно направление. Грибы могут выбирать все возможные направления одновременно. Если гриб находит пищу, он увеличивает число отростков мицелия, связывающих его с пищей, и купирует отростки, которые никуда не ведут. Это явление объясняется теорией естественного отбора. Мицелий разрастается, некоторые гифы оказываются более конкурентоспособными, чем другие. И они утолщаются. Менее «выгодные» гифы перестают существовать, и остается несколько магистралей. Купируя рост в одном направлении и разрастаясь в другом, грибницы могут даже перемещаться по местности.

Английское слово extravagant имеет латинские корни: оно происходит от extra («наружу») и vagari («бродить»). И это хорошее определение для мицелия, который бесконечно смещается «наружу» и за пределы своих границ, ни одна из которых не является четкой, чего нельзя сказать о границах тел животных. Мицелий – это тело без структуры.

Как одна часть мицелия «узнает», что происходит в другой части? Он разрастается, но должен как-то поддерживать связь с самим собой.


Мицелий исследует плоскость


Стефан Олссон – шведский миколог, который несколько десятилетий пытался понять, что делает огромную грибницу единым самоорганизующимся целым. Несколько лет назад он заинтересовался одним из видов гриба, обладающим свойством биолюминесценции: грибница и плодовое тело светятся в темноте, что привлекает насекомых, рассеивающих грибные споры. В XIX веке шахтеры английских шахт отмечали, что грибы на деревянных сваях светили так ярко, что видно было руки, а Бенджамин Франклин предложил использовать светящиеся грибы, которые звали лисьими огнями, для подсветки компаса и глубиномера на первой подводной лодке (она называлась The Turtle и была создана в 1775 году, во время Войны за независимость). Вид, который изучал Олссон, – это панеллюс вяжущий, или сычужный гриб, Panellus stipticus. «Я выращивал его в чашках Петри, и при его свете можно было читать, – говорил он мне. – Когда он стоял дома на полке, он был похож на маленькую лампу. Детям нравилось». Чтобы проследить поведение гриба Panellus stipticus, Олссон вырастил его в лаборатории и две светящиеся чашки Петри поместил в абсолютно темный ящик, где поддерживал постоянные условия. Он оставил их в покое на неделю, в течение которой камера, достаточно чувствительная, чтобы реагировать на биолюминесценцию, делала фотографии каждые несколько секунд. Замедленная видеосъемка показала, как две не связанные друг с другом культуры мицелия росли, приобретая форму неправильных окружностей, каждая в своей чашке Петри, и светились в центре сильнее, чем по краям. Через несколько дней – примерно две минуты на видео – произошло резкое изменение. В одной из культур свечение волной прошло над грибницей от края до края. Через день такая же волна «накрыла» вторую культуру. Если принять во внимание факт времени, мы делаем вывод о чрезвычайном эмоциональном накале. За несколько грибных мгновений грибница перешла в другое физиологическое состояние. «Что, черт возьми, происходит?» – удивлялся Олссон. Он в шутку предположил, что гриб, оставленный в одиночестве, заскучал, начал играть или, напротив, загрустил. Хотя он оставил культуры в темноте еще на несколько недель, пульсация не повторилась. Спустя годы он так и не смог объяснить причину этого явления. Он него укрылось также, каким образом мицелий мог координировать свое поведение в течение такого короткого времени.

Как устроено взаимодействие частей мицелия, понять трудно, ведь у него нет «мозга». Если человеку отсечь голову, если у него остановится сердце, он умрет. У грибницы нет ни того, ни другого. Грибы, как и растения, децентрализованны. У них нет оперативных центров, столиц, домов правительств. Управление в грибнице рассеянное: оно везде одновременно и нигде в особенности. Из фрагмента мицелия можно воссоздать всю сеть, а это значит, что каждый мицелиальный индивидуум – если у вас хватит смелости назвать его так – потенциально бессмертен.

Олссон заинтересовался спонтанными волнами свечения и приготовил еще один набор чашек Петри для следующего эксперимента. Он попытался уколоть край гриба Panellus кончиком пипетки. Пораженная область мгновенно осветилась. Его удивило, что в течение 10 минут свечение распространилось на 9 сантиметров в глубь грибницы. Это куда быстрее химического сигнала внутри мицелия. Олссон предположил, что пораженные гифы могли выбросить летучие соединения в воздух и это облако накрыло грибницу, таким образом сделав ненужным движение внутри тканей.

Он проверил эту возможность. Он вырастил две генетически идентичные грибницы рядом друг с другом. Между ними не было прямых связей, но они были расположены достаточно близко – химические вещества по воздуху преодолели бы это расстояние. Олссон уколол одну из грибниц. Свет распространился по пораженной грибнице, как и раньше, но не перешел на соседнюю. Значит, какая-то система быстрой связи должна была работать внутри грибницы. Олссон все больше озадачивался: что это могло быть?

Мицелий – это прежде всего инструмент питания. Некоторые организмы, например фотосинтезирующие растения, сами производят пищу, а другие, как большинство животных, находят ее в окружающей среде и помещают внутрь своих тел, где она переваривается и усваивается. У грибов другая стратегия. Они переваривают окружающую среду, содержащую пищу, и затем поглощают ее своими телами. Их гифы длинные и ветвятся, они толщиной всего в одну клетку – диаметром от 2 до 20 микрометров, более чем в пять раз тоньше человеческого волоса. Чем больше окружающих объектов могут «потрогать» гифы, тем больше пищи они могут потребить. Разница между животными и грибами такова: животные помещают пищу в свои тела, а грибы помещают свои тела в пищу.

Однако мир как источник пищи непредсказуем. Большинство животных справляются с этой проблемой, перемещаясь в пространстве. Если еда покидает пределы какой-либо области, за ней следуют и животные. Но чтобы встроиться в непредсказуемый источник пищи, как это делает мицелий, нужно быть оборотнем. Мицелий – это живой, растущий, авантюрный исследователь, воплощенное в живой ткани сомнение. В научной среде это называют индетерминизмом: нет двух одинаковых грибниц. Какой формы мицелий? Это все равно что спрашивать о форме воды. На этот вопрос можно ответить, только зная, где он растет. Сравним мицелий с людьми – существами одной конструкции, которые развиваются примерно по одному сценарию. Едва ли вас удивит утверждение, что если мы рождаемся с двумя руками, то и умираем с двумя руками.

Мицелий помещает себя в окружающую среду, но все же число вариантов его развития не бесконечно. Разные виды грибов образуют разные виды грибниц. У некоторых видов гифы тонкие, у других – толстые. Некоторые привередливы, другие не очень. Некоторые из них вырастают в эфемерные пушинки, не выходящие за пределы источников пищи, и могут поместиться на крохотной частичке пыли. Другие виды образуют грибницы-долгожители, покрывающие километры пространства. Некоторые тропические виды вообще не едят соседей, а ведут себя как фильтраторы – отращивают сети из толстых прядей мицелия и используют их для ловли падающих листьев.

Неважно, где растут грибы, они должны внедриться в источник пищи. И для этого они используют давление. Когда мицелию нужно прорвать особенно прочную преграду – как, например, болезнетворным грибам, заражающим растения, – он формирует особые проникающие гифы, которые давят с силой 50–80 атмосфер, чего достаточно, чтобы пробраться внутрь таких твердых пластиков, как майлар и кевлар. Одно из исследований доказало, что если бы гифа была шириной с человеческую руку, она могла бы поднять восьмитонный школьный автобус.

1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18 
Рейтинг@Mail.ru