bannerbannerbanner
Живи долго! Научный подход к долгой молодости и здоровью

Майкл Грегер
Живи долго! Научный подход к долгой молодости и здоровью

Полная версия

Клеточное старение

Пятьдесят лет назад микробиолог Леонард Хейфлик продемонстрировал, что, вопреки сложившемуся мнению, человеческие клетки в чашке Петри не продолжают делиться вечно[488]. Они растут и делятся всего около 50 раз, после чего переходят в необратимое состояние остановки клеточного цикла, называемое клеточным старением, или сенесценцией[489]. Термин происходит от латинского слова senex, означающего «старение»[490]. У нас есть бессмертные стволовые клетки, способные создавать новые клетки «с чистого листа», но после их образования они успевают совершить всего около пятидесяти делений, прежде чем тоже погибнуть. И это хорошо.

Так называемый естественный предел Хейфлика помогает защитить организм от рака, блокируя размножение поврежденных клеток[491]. Это хорошо для успешного прохождения нами репродуктивного возраста и передачи генов следующему поколению. Но что происходит, когда «естественная» продолжительность жизни человека, составляющая около 30 лет, увеличивается до 80 и более лет благодаря таким чудесам, как улучшение санитарных условий жизни? Наше тело оказывается замусоренным стареющими клетками[492].

Клетки-зомби

Хейфлик полагал, что эти неделящиеся клетки могут способствовать старению просто потому, что они больше не могут участвовать в восстановлении и регенерации тканей[493]. Но оказалось, что они активно повреждают окружающие ткани, за что и получили прозвище «клетки-зомби»[494]. Проблема «зомби» не только в том, что они больше не являются полезными членами общества. Хуже другое – они хотят съесть ваш мозг.

Когда мы молоды, стареющие клетки очищаются нашей иммунной системой. Когда же клетки достигают своего предела и готовы уйти на пенсию, они запрограммированы на выделение коктейля воспалительных химических веществ, называемых сенесцентно-ассоциированным секреторным фенотипом, или SASP. Воспаление – процесс, который часто имеет негативный оттенок, – иногда может быть полезным. Подобно тому как воспаление, вызванное занозой, выводит иммунные клетки из циркуляции в месте повреждения, стареющие клетки сами устраивают себе похороны, выделяя воспалительные факторы, чтобы маркировать себя для иммунного клиренса[495]. Однако здесь есть проблема. С возрастом стареющих клеток становится все больше и больше, а наша иммунная система и сама не в лучшем состоянии. Таким образом, польза воспаления, как в случае с занозой, превращается во вред – хроническое системное воспаление, характерное для старения и болезней.

Несмотря на то что сенесцентные клетки в стареющих тканях составляют лишь небольшую часть от общего числа клеток[496], они оказывают значительный эффект за счет секреции SASP, которая может нарушать локальную архитектуру ткани[497]. Какой орган в организме человека часто является самым большим? Печень? Кожа? Нет. У все большего числа людей это жировая ткань, то есть жир в организме. Воспаление, связанное с ожирением и усугубляющееся с возрастом[498], вызвано накоплением стареющих жировых клеток, продуцирующих SASP[499]. Воспаление, спровоцированное SASP, может даже объяснять некоторые из самых страшных побочных эффектов химиотерапии. Химиотерапия успешно приводит к «состариванию» раковых клеток, но последующий SASP-шторм может вызвать угнетение функции костного мозга и кардиотоксичность.

Учитывая все особенности SASP-воспаления, не приходится удивляться, что обнаруживается связь между сенесцентными клетками и целым рядом возрастных заболеваний, включая болезни Альцгеймера, Паркинсона, остеоартрит, остеопороз, грыжи межпозвонковых дисков, искривление позвоночника, снижение мышечной массы и функции почек[500], [501]. Даже рак, как это ни парадоксально. Хотя клеточное старение, вероятно, развивалось как противораковый механизм, на поздних стадиях жизни избыточное воспаление может активно подпитывать рост опухоли, причем подпитывать в буквальном смысле – через ангиогенез, прорастание новых кровеносных сосудов в опухоль[502]. Но как понять, что клеточное старение является причиной, а не следствием заболевания?

 

Молодая кровь

В видео see.nf/parabiosis я подробно рассказываю о мрачных экспериментах, показавших, что старые животные, соединенные хирургическим путем с молодыми (как искусственно созданные «сиамские близнецы»), становятся более здоровыми, сильными, умными[503] и живут значительно дольше[504]. Чтобы определить, связано ли это с передаваемыми через кровь факторами, а не просто с общим потенциалом органов, исследователи обратились к переливанию старым животным молодой крови. В ролике see.nf/bloodboy я рассказываю об этих экспериментальных вампирах 2.0.

Действительно, введение крови молодых мышей старым улучшает когнитивные способности последних, что говорит о наличии некоего живительного фактора в крови молодых, а введение крови старых мышей молодым может им навредить, что говорит о наличии некоего ослабляющего фактора в крови старых[505].Или, может быть, старая кровь просто уменьшает концентрацию живительного фактора в крови молодой мыши? Если уж на то пошло, может быть, молодая кровь, напротив, разбавляет ослабляющий фактор старой мыши[506]? Удивительно, но последний вариант кажется более близким к истине, поскольку простое разбавление крови у старых животных может реплицировать большую часть регенерации, обнаруженной в парабиотических исследованиях и при переливании крови[507].И действительно, у пациентов с умеренной формой болезни Альцгеймера после гемоделюции (разбавления крови) в течение 14 месяцев наблюдалось примерно на 60 % меньше когнитивных и функциональных нарушений по сравнению с контрольной группой, в отношении которой проводилась фиктивная плацебо-процедура[508].Как сказал директор Института биомедицинской этики Цюрихского университета, «это прозвучит пугающе, но старики буквально питаются молодыми»[509].

Покончить со старым

Исследователи пересадили сенесцентные клетки от старых мышей к молодым, и оказалось, что достаточно всего нескольких клеток, чтобы вызвать у них стойкую возрастную физическую дисфункцию и увеличить смертность в 5 раз[510]. И наоборот, удаление даже небольшой части сенесцентных клеток может значительно замедлить развитие опухолей и возрастную деградацию органов[511]. Заметное увеличение продолжительности жизни и здоровья благодаря очистке организма от сенесцентных клеток вызвало настоящую «золотую лихорадку» по поиску сенолитиков – соединений, способных уничтожать стареющие клетки[512]. В своем видеоролике see.nf/senolytics я рассматриваю как лекарственные препараты, так и изменение образа жизни.

Одним словом, клеточное старение можно предотвратить, если изначально не допустить повреждения ДНК (см. с. 127). Затем сенесцентные клетки можно уничтожить с помощью физических упражнений[513] и ограничения калорийности[514] (подробности см. на see.nf/senolytics), а также определенных пищевых компонентов.

Кверцетин

В 1936 году Альберт Сент-Дьёрдьи, получивший в следующем году Нобелевскую премию за открытие витамина С, предложил считать витамином и класс фитонутриентов, называемых флавонолами. (Он предложил называть их «витамин Р»[515].) Наиболее распространенным флавонолом в рационе является кверцетин[516], который в большом количестве содержится в луке, капусте и яблоках[517]. Именно он придает яблочной кожуре горьковатый вкус[518]. Исследователи протестировали десятки различных соединений на клетках, взятых из пуповины, а затем принудительно состаренных с помощью облучения. В 2015 году они объявили о своих результатах: кверцетин оказался естественным сенолитиком[519].

Более подробная информация приведена в ролике see.nf/quercetin. Как итог: дозы кверцетина, равные человеческому эквиваленту одного небольшого яблока в неделю, снизили клеточное старение и увеличили продолжительность жизни мышей. У них меньше выпадали волосы, улучшалась работа сердца и повышалась спортивная выносливость вплоть до возраста, эквивалентного человеческому шестидесятилетию[520]. Узнав это, мы, возможно, захотим поделиться несколькими капустными листьями с нашей домашней мышкой, но что делать с людьми?

Источники кверцетина

Кверцетин можно найти в дереве, от латинского названия которого – quercus — оно и получило свое наименование. Это дерево – дуб[521]. Он также широко распространен в продуктах растительного происхождения[522]. На самом деле кверцетин настолько распространен в царстве растений, что его можно найти даже в салате айсберг[523]. (Салат – пятый по значимости источник кверцетина в рационе американцев[524].) Лук содержит от 20 мг[525] до 100 мг[526] в каждой луковице, яблоки – от 4 мг до 20 мг[527], килограммовый кочан капусты – 50 мг, а чашка чая – около 5 мг кверцетина[528].В столовой ложке каперсов его 20 мг, но следите, чтобы уровень натрия в них был не слишком высоким[529].(Я видел в продаже каперсы с содержанием от 0 до 200 % всей суточной нормы натрия на порцию.)

 

Хотя добавки кверцетина, приобретаемые через интернет, как правило, точно маркированы[530], а данные о безопасности свидетельствуют об отсутствии значительных побочных эффектов при приеме до 1000 мг в течение 12 недель, я рекомендую придерживаться диетических источников[531], как это делают специалисты клиники Майо[532].

Яблоки и лук

Из целого ряда полезных эффектов, приписываемых продуктам, богатым кверцетином, таким как яблоки и лук, трудно вычленить действие именно кверцетина. В видео see.nf/applesonions я отмечаю, что мудрый афоризм 1866 года: съедая одно яблоко в день, вы оставляете врача без работы, – похоже, не теряет актуальности и сегодня[533]. Оказывается, заметное улучшение функции артерий в течение нескольких часов после употребления неочищенных яблок (чего не происходит после употребления яблок, очищенных от кожуры[534]) согласуется с эффектом кверцетина, и действительно, даже добавка выделенного кверцетина может снижать артериальное давление[535], уровень холестерина[536] и уменьшать воспаление[537]. К сожалению, богатый кверцетином луковый порошок не улучшил когнитивные способности у пожилых людей с болезнью Альцгеймера[538] или без[539] нее. (Подробности см. see.nf/onionpowder.)

Хотя в большинстве исследований, посвященных изучению кверцетина, использовались дозы, которые нелегко достичь с помощью диеты, даже три четверти чайной ложки свежего лука могут быстро нормализовать артериальное давление и текучесть крови по сравнению с плацебо[540]. Это, по-видимому, объясняет тот факт, что у людей, употребляющих больше кверцетина, риск смерти от сердечных заболеваний ниже в 2 раза[541]. В одном из модельных исследований было даже высказано предположение, что ежедневное употребление одного яблока может предотвратить примерно такое же количество смертей от сосудистых заболеваний в масштабах популяции, как и назначение всем гиполипидемических препаратов, причем с меньшим количеством побочных эффектов[542]. (По иронии судьбы сейчас, когда такие статины доступны в виде дженериков, лекарство, скорее всего, будет стоить дешевле фруктов.)

Новая морщина

В 2018 году появились разочаровывающие данные интервенционного исследования когнитивных функций, в котором ставилась под сомнение сенолитическая активность кверцетина. Первоначальные исследования кверцетина на людях проводились на эпителиальных клетках, полученных из выстилки пуповины, – это удобный источник получения человеческой ткани. Но когда эксперимент был повторен с клетками взрослых доноров, оказалось, что кверцетин не обладает таким же эффектом уничтожения сенесцентных клеток[543]. Однако в 2019 году было обнаружено, что кверцетин действует еще лучше.

Синдром Вернера – редкое генетическое заболевание, характеризующееся мутацией фермента репарации ДНК, что приводит к преждевременному старению. Когда сенесцентные клетки подвергались воздействию кверцетина, который может попасть в кровь при употреблении продуктов, богатых кверцетином[544], казалось, что они не уничтожаются, а реабилитируются[545]. Словно процесс старения был обращен вспять, как бы пробуждая к жизни мертвецов. А как насчет сенесцентных клеток, которые не мутировали? Там тоже был обнаружен «омолаживающий эффект». В журнале Experimental Gerontology исследователи из Греции заявили, что испытали кверцетин на добровольцах, и сообщили о «положительных результатах в отношении эластичности, увлажненности и глубины морщин»[546]. Однако их данные, похоже, не были опубликованы, что вызывает сомнения в правдивости заявлений.

Физетин

Ободренные полученными данными, подтверждающими сенолитическое действие коктейля из кверцетина, исследователи приступили к изучению других флавоноидов[547] и обнаружили такой, который оказался почти в 2 раза мощнее кверцетина: физетин[548]. Он способен увеличить продолжительность жизни дрожжей на 55 %, а плодовых мушек – на 23 %. Физетин также увеличил продолжительность жизни мышей, даже если они стали получать препарат в более позднем возрасте[549].Средняя и максимальная продолжительность жизни мышей, начавших принимать физетин в возрасте, соответствующем 75 годам у человека, увеличилась примерно на 75 %. Маркеры клеточного старения и SASP были значительно снижены во всех проанализированных тканях, и это сопровождалось уменьшением возрастной патологии[550]. В отдельном исследовании было обнаружено, что физетин также может повышать долговременную память у мышей[551]. А что же мы?

Как и кверцетин, физетин в клинических исследованиях показал противовоспалительное действие[552], но как насчет сенолитического эффекта? Когда жировая ткань человека, удаленная в ходе обычной операции, подвергалась воздействию физетина, действительно, наблюдалось снижение уровня маркеров старения и SASP. Учитывая, что физетин естественным образом присутствует в рационе, не имеет побочных эффектов и уже продается без рецепта в виде БАД, ученые немедленно приступили к проверке антивозрастного потенциала физетина[553]. В настоящее время в работе находится более десятка исследований, в которых физетин противостоит целому ряду возрастных заболеваний, включая остеоартрит, остеопороз, болезни почек, снижение когнитивных способностей и даже осложнения COVID-19[554]. Тот факт, что к натуральному продукту проявляется столь большой клинический интерес – в отсутствие финансовых стимулов, которые традиционно определяют большую часть биомедицинских исследований, – говорит о его перспективности.

Ягодные сокровища

Хотя впервые физетин был выделен из кустарника, называемого скумпией (или венецианским сумахом), выше всего его концентрация в клубнике – это на сегодня самый богатый из известных пищевых источников физетина[555]. Возможно, это объясняет, почему именно клубника, а не черника (несмотря на высокое содержание в ней антиоксидантов) смогла более эффективно спасти крыс, подвергшихся радиационному облучению[556]. В видео see.nf/fisetin я привожу все основные исследования клубники. Вкратце: рандомизированные контролируемые исследования показывают, что клубника может улучшать когнитивные способности[557], снижать уровень холестерина, воспаления[558], излечивать остеоартрит[559], а также увеличивать количество полезных микроорганизмов в кишечнике, включая Christensenellaceae[560] – недавно открытое[561] семейство бактерий, связанных с долголетием (эту связь обнаружили во время исследований долгожителей – столетних и старше)[562]. В видеоролике я также объясняю, почему не рекомендуется принимать добавки с физетином.

Перец пиппали

Третье природное сенолитическое соединение – пиперлонгумин[563], который в концентрированном виде содержится в специи, продающейся в индийских продуктовых магазинах под названием пиппали (Piper longum, известной также как пибо в Китае и длинный перец в Европе)[564]. О том, что это за специя и что она может делать, я подробно рассказываю в see.nf/pippali. Я в него верю, поэтому добавил в свой ежедневный набор специй наряду с амлой (см. с. 557), черным кумином (см. с. 28) и куркумой (см. с. 113). Обратите внимание, что пиппали не рекомендуется использовать во время беременности и кормления грудью[565].

Пища для размышлений

Клеточное старение считается одним из основополагающих признаков старости[566]. Воспалительный SASP, выделяемый стареющими клетками, признается главной движущей силой деградации тканей и развития заболеваний[567]. Чтобы избежать старения клеток, мы можем защитить ДНК от повреждения, следуя рекомендациям, приведенным в главе «Окисление», а для очистки таких клеток и их SASP включить в рацион продукты, в которых содержатся природные сенолитические соединения: кверцетин, физетин и пиперлонгумин. Хотя пока неясно, можно ли достичь достаточного уровня сенолиза, употребляя продукты, богатые этими соединениями, такие продукты сами по себе полезны для здоровья.

Чтобы замедлить старение, ежедневно употребляйте:

• продукты, напитки и приправы, богатые кверцетином, такие как лук, яблоки, капуста, чай, каперсы без соли;

• свежую, замороженную или сублимированную клубнику;

• приправу к блюдам с пиппали (длинным перцем).

Эпигенетика

До недавнего времени считалось, что процесс старения – это неумолимое снижение функций организма, характеризующееся накоплением молекулярных повреждений ключевых клеточных компонентов, в частности ДНК[568]. Различные узлы автомобиля со временем выходят из строя, то же происходит и с органами нашего тела. Опровергая это предположение, назовем такие формы жизни, которые, казалось бы, не поддаются старению, находясь в состоянии некоего анабиоза: финиковые косточки, найденные при археологических раскопках, прорастающие через тысячи лет, растения[569], возрождающиеся из плодов, закопанных арктическими белками 30 тысяч лет назад, споры[570] и бактерии, найденные в янтаре и сохранившие жизнеспособность через десятки миллионов лет, а в кристаллах соли – через сотни миллионов лет. Однако не нужно искать экзотические примеры, чтобы продемонстрировать отсутствие связи биологического старения с хронологическим («календарным») старением. Случаи, когда часы старения не только останавливаются, но и активно обращаются вспять и даже обнуляются, мы можем наблюдать каждый день[571].

Великая перезагрузка

Задумайтесь. Девочка рождается с генетически заложенным количеством яйцеклеток. Могут пройти десятилетия, прежде чем одна из этих яйцеклеток будет оплодотворена. Эта яйцеклетка может пролежать в яичниках 20, 30, 40 лет – и все это время она будет стареть, как и все остальные клетки ее организма. Допустим, ее хозяйка забеременеет в 30 лет. После оплодотворения, если яйцеклетка каким-то образом не отмотает свои часы старения до нуля, из этой тридцатилетней яйцеклетки может родиться еще одна девочка с яичниками, которым на тот момент 30 лет и 9 месяцев. К тому времени, когда она родит ребенка спустя десятилетия, возраст яйцеклеток будет превышать 50 лет, и они будут продолжать стареть и накапливать молекулярные повреждения с каждым последующим поколением. Поэтому все проявления старения в яйцеклетках обязательно должны быть стерты[572]. В противном случае возраст яйцеклеток в яичниках женщин исчислялся бы миллионами лет!

В 1996 году мы узнали, что яйцеклетки – не единственные клетки, способные полностью изменить процесс старения. В тот год родилась овца по имени Долли. Ядро неоплодотворенной яйцеклетки было удалено, а на его место вставлено ядро клетки вымени. («Долли получена из клетки молочной железы, – невозмутимо заявил один из ключевых исследователей, объясняя, почему ее так назвали, – и мы не могли придумать более впечатляющей пары молочных желез, чем у Долли Партон[573]»)[574]. Затем после небольшого удара током, клетка начала делиться (сперматозоиды не потребовались), и на свет появилась Долли – первое животное, клонированное из взрослой клетки. (Ранее из клетки головастика была клонирована лягушка, за что исследователь был удостоен Нобелевской премии, но Долли стала первым животным, клонированным из взрослой клетки[575].)

Мир был поражен тем, что удалось создать генетически идентичную копию животного. После Долли были созданы тысячи клонов мышей, коз, свиней, крыс, коров, лошадей, хорьков, волков, оленей, буйволов, верблюдов и собак. Мимо кошек тоже не прошли, первая из них предсказуемо получила имя Copycat[576]. Однако значимость этого не ограничивается воспроизведением особо продуктивных сельскохозяйственных животных. Оказалось, что в одной зрелой специализированной клетке, взятой из вымени овцы, был спрятан полный генетический план всего животного, которое мы узнали под именем Долли[577]. Более того, возраст клетки был отмотан назад до нуля.

Ходят разговоры, что Долли была поражена неким синдромом преждевременного старения. Ведь овцы живут до 12 лет, а клетка вымени была взята у шестилетнего донора[578], и Долли умерла в 6 лет, что позволяет предположить, что часы старения просто тикали без перезапуска. Но Долли умерла от вирусного заболевания, а не от старости[579], и последующие опыты показывают, что клоны могут иметь нормальную продолжительность жизни[580]. Более того, мышей последовательно реклонировали, то есть создавали клоны из клонов и далее из последующих клонов в двадцати пяти поколениях – и у всех них была нормальная продолжительность жизни[581]. Таким образом, взрослые клетки можно не только вернуть в эмбриональное состояние, но и эффективно омолодить, стерев все следы старения[582].

Добро пожаловать в эпигенетику.

488Hayflick L, Moorhead PS. 1961. The serial cultivation of human diploid cell strains. Exp. Cell Res. 25, 585–621.; https://pubmed.ncbi.nlm.nih.gov/13905658/
489Zhang H, Simon AK. Polyamines reverse immune senescence via the translational control of autophagy. Autophagy. 2020;16(1):181–2. https://pubmed.ncbi.nlm.nih.gov/31679458/
490Luo J, Si H, Jia Z, Liu D. Dietary anti-aging polyphenols and potential mechanisms. Antioxidants. 2021;10(2):283. https://pubmed.ncbi.nlm.nih.gov/33668479/
491Schmitt R. Senotherapy: growing old and staying young? Pflugers Arch-Eur J Physiol. 2017;469(9):1051–9. https://pubmed.ncbi.nlm.nih.gov/28389776/
492van Deursen JM. Senolytic therapies for healthy longevity. Science. 2019;364(6441):636–7. https://pubmed.ncbi.nlm.nih.gov/31097655/
493Baker DJ, Petersen RC. Cellular senescence in brain aging and neurodegenerative diseases: evidence and perspectives. J Clin Invest. 2018;128(4):1208–16. https://pubmed.ncbi.nlm.nih.gov/29457783/
494Davan-Wetton CSA, Pessolano E, Perretti M, Montero-Melendez T. Senescence under appraisal: hopes and challenges revisited. Cell Mol Life Sci. 2021;78(7):3333–54. https://pubmed.ncbi.nlm.nih.gov/33439271/
495Prašnikar E, Borišek J, Perdih A. Senescent cells as promising targets to tackle age-related diseases. Ageing Res Rev. 2021;66:101251. https://pubmed.ncbi.nlm.nih.gov/33385543/
496Zhu Y, Tchkonia T, Pirtskhalava T, et al. The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell. 2015;14(4):644–58. https://pubmed.ncbi.nlm.nih.gov/25754370/
497van Deursen JM. Senolytic therapies for healthy longevity. Science. 2019;364(6441):636–7. https://pubmed.ncbi.nlm.nih.gov/31097655/
498Mau T, Yung R. Adipose tissue inflammation in aging. Exp Gerontol. 2018;105:27–31. https://pubmed.ncbi.nlm.nih.gov/29054535/
499Prašnikar E, Borišek J, Perdih A. Senescent cells as promising targets to tackle age-related diseases. Ageing Res Rev. 2021;66:101251. https://pubmed.ncbi.nlm.nih.gov/33385543/
500de Keizer PLJ. The fountain of youth by targeting senescent cells? Trends Mol Med. 2017;23(1):6–17. https://pubmed.ncbi.nlm.nih.gov/28041565/
501Prašnikar E, Borišek J, Perdih A. Senescent cells as promising targets to tackle age-related diseases. Ageing Res Rev. 2021;66:101251. https://pubmed.ncbi.nlm.nih.gov/33385543/
502van Deursen JM. Senolytic therapies for healthy longevity. Science. 2019;364(6441):636–7. https://pubmed.ncbi.nlm.nih.gov/31097655/
503Hofmann B. Young blood rejuvenates old bodies: a call for reflection when moving from mice to men. Transfus Med Hemother. 2018;45(1):67–71. https://pubmed.ncbi.nlm.nih.gov/29593463/
504Ludwig FC, Elashoff RM. Mortality in syngeneic rat parabionts of different chronological age. Trans N Y Acad Sci. 1972;34(7):582–7. https://pubmed.ncbi.nlm.nih.gov/4507935/
505Lavazza A, Garasic M. Vampires 2.0? The ethical quandaries of young blood infusion in the quest for eternal life. Med Health Care Philos. 2020;23(3):421–32. https://pubmed.ncbi.nlm.nih.gov/32447568/
506Rebo J, Mehdipour M, Gathwala R, et al. A single heterochronic blood exchange reveals rapid inhibition of multiple tissues by old blood. Nat Commun. 2016;7(1):13363. https://pubmed.ncbi.nlm.nih.gov/27874859/
507Mehdipour M, Skinner C, Wong N, et al. Rejuvenation of three germ layers tissues by exchanging old blood plasma with saline-albumin. Aging (Albany NY). 2020;12(10):8790–819. https://pubmed.ncbi.nlm.nih.gov/32474458/
508Boada M, López OL, Olazarán J, et al. A randomized, controlled clinical trial of plasma exchange with albumin replacement for Alzheimer’s disease: primary results of the AMBAR Study. Alzheimers Dement. 2020;16(10):1412–25. https://pubmed.ncbi.nlm.nih.gov/32715623/
509Biller-Andorno N. Young blood for old hands? A recent anti-ageing trial prompts ethical questions. Swiss Med Wkly. 2016;146(3940):w14359. https://pubmed.ncbi.nlm.nih.gov/27684581/
510Xu M, Pirtskhalava T, Farr JN, et al. Senolytics improve physical function and increase lifespan in old age. Nat Med. 2018;24(8):1246–56. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6082705/
511Baker DJ, Childs BG, Durik M, et al. Naturally occurring p16INK4a-positive cells shorten healthy lifespan. Nature. 2016;530(7589):184–9. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4845101/
512de Keizer PLJ. The fountain of youth by targeting senescent cells? Trends Mol Med. 2017;23(1):6–17. https://pubmed.ncbi.nlm.nih.gov/28041565/
513Chen X, Yi Z, Wong GT, et al. Is exercise a senolytic medicine? A systematic review. Aging Cell. 2021;20(1). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7811843/
514Fontana L, Mitchell SE, Wang B, et al. The effects of graded caloric restriction: XII. Comparison of mouse to human impact on cellular senescence in the colon. Aging Cell. 2018;17(3):e12746. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5946078/
515Rusznyák S, Szent-Györgyi A. Vitamin P: flavonols as vitamins. Nature. 1936;138(3479):27. https://www.nature.com/articles/138027a0
516Belinha I, Amorim MA, Rodrigues P, et al. Quercetin increases oxidative stress resistance and longevity in Saccharomyces cerevisiae. J Agric Food Chem. 2007;55(6):2446–51. https://pubmed.ncbi.nlm.nih.gov/17323973/
517Formica JV, Regelson W. Review of the biology of quercetin and related bioflavonoids. Food Chem Toxicol. 1995;33(12):1061–80. https://pubmed.ncbi.nlm.nih.gov/8847003/
518Kirkland JL, Tchkonia T. Senolytic drugs: from discovery to translation. J Intern Med. 2020;288(5):518–36. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7405395/
519Zhu Y, Tchkonia T, Pirtskhalava T, et al. The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell. 2015;14(4):644–58. https://pubmed.ncbi.nlm.nih.gov/25754370/
520Geng L, Liu Z, Wang S, et al. Low-dose quercetin positively regulates mouse healthspan. Protein Cell. 2019;10(10):770–5. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6776572/
521Yang D, Wang T, Long M, Li P. Quercetin: its main pharmacological activity and potential application in clinical medicine. Oxid Med Cell Longev. 2020;2020:1–13. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7790550/
522Murphy MM, Barraj LM, Herman D, Bi X, Cheatham R, Randolph RK. Phytonutrient intake by adults in the United States in relation to fruit and vegetable consumption. J Acad Nutr Diet. 2012;112(2):222–9. https://pubmed.ncbi.nlm.nih.gov/22741166/
523Mai F, Glomb MA. Isolation of phenolic compounds from iceberg lettuce and impact on enzymatic browning. J Agric Food Chem. 2013;61(11):2868–74. https://pubmed.ncbi.nlm.nih.gov/23473017/
524Murphy MM, Barraj LM, Herman D, Bi X, Cheatham R, Randolph RK. Phytonutrient intake by adults in the United States in relation to fruit and vegetable consumption. J Acad Nutr Diet. 2012;112(2):222–9. https://pubmed.ncbi.nlm.nih.gov/22741166/
525Agricultural Research Service, United States Department of Agriculture. Onions, raw. FoodData Central. https://fdc.nal.usda.gov/fdc-app.html?query=onion&utf8=%E2%9C%93&affiliate=usda&commit=Search#/food-details/170000/nutrients. Published April 1, 2019. Accessed May 11, 2021.; https://fdc.nal.usda.gov/fdc-app.html#/food-details/170000/nutrients
526Agricultural Research Service, United States Department of Agriculture. Onions, red, raw. FoodData Central. https://fdc.nal.usda.gov/fdc-app.html?query=onion&utf8=%E2%9C%93&affiliate=usda&commit=Search#/food-details/790577/nutrients. Published April 1, 2020. Accessed May 11, 2021.; https://fdc.nal.usda.gov/fdc-app.html#/food-details/170000/nutrients
527Agricultural Research Service, United States Department of Agriculture. Apple, raw. FoodData Central. https://fdc.nal.usda.gov/fdc-app.html?query=apples&utf8=%E2%9C%93&affiliate=usda&commit=Search#/food-details/1102644/nutrients. Published October 30, 2020. Accessed May 11, 2021.; https://fdc.nal.usda.gov/fdc-app.html?query=apples&utf8=%E2%9C%93&affiliate=usda&commit=Search#/food-details/1102644/nutrients
528Formica JV, Regelson W. Review of the biology of quercetin and related bioflavonoids. Food Chem Toxicol. 1995;33(12):1061–80. https://pubmed.ncbi.nlm.nih.gov/8847003/
529Amanzadeh E, Esmaeili A, Rahgozar S, Nourbakhshnia M. Application of quercetin in neurological disorders: from nutrition to nanomedicine. Rev Neurosci. 2019;30(5):555–72. https://pubmed.ncbi.nlm.nih.gov/30753166/
530Vida RG, Fittler A, Somogyi-Végh A, Poór M. Dietary quercetin supplements: assessment of online product informations and quantitation of quercetin in the products by high-performance liquid chromatography. Phytother Res. 2019;33(7):1912–20. https://pubmed.ncbi.nlm.nih.gov/31155780/
531Harwood M, Danielewska-Nikiel B, Borzelleca JF, Flamm GW, Williams GM, Lines TC. A critical review of the data related to the safety of quercetin and lack of evidence of in vivo toxicity, including lack of genotoxic/carcinogenic properties. Food Chem Toxicol. 2007;45(11):2179–205. https://pubmed.ncbi.nlm.nih.gov/17698276/
532Hickson LJ, Langhi Prata LGP, Bobart SA, et al. Senolytics decrease senescent cells in humans: preliminary report from a clinical trial of Dasatinib plus Quercetin in individuals with diabetic kidney disease. EBioMedicine. 2019;47:446–56. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6796530/
533Briggs ADM, Mizdrak A, Scarborough P. A statin a day keeps the doctor away: comparative proverb assessment modelling study. BMJ. 2013;347:f7267. https://www.bmj.com/content/347/bmj.f7267
534Bondonno NP, Bondonno CP, Blekkenhorst LC, et al. Flavonoid-rich apple improves endothelial function in individuals at risk for cardiovascular disease: a randomized controlled clinical trial. Mol Nutr Food Res. 2018;62(3). https://pubmed.ncbi.nlm.nih.gov/29086478/
535Huang H, Liao D, Dong Y, Pu R. Effect of quercetin supplementation on plasma lipid profiles, blood pressure, and glucose levels: a systematic review and meta-analysis. Nutr Rev. 2020;78(8):615–26. https://pubmed.ncbi.nlm.nih.gov/31940027/
536Tabrizi R, Tamtaji OR, Mirhosseini N, et al. The effects of quercetin supplementation on lipid profiles and inflammatory markers among patients with metabolic syndrome and related disorders: a systematic review and meta-analysis of randomized controlled trials. Crit Rev Food Sci Nutr. 2020;60(11):1855–68. https://pubmed.ncbi.nlm.nih.gov/31017459/
537Mohammadi-Sartang M, Mazloom Z, Sherafatmanesh S, Ghorbani M, Firoozi D. Effects of supplementation with quercetin on plasma C-reactive protein concentrations: a systematic review and meta-analysis of randomized controlled trials. Eur J Clin Nutr. 2017;71(9):1033–9. https://pubmed.ncbi.nlm.nih.gov/28537580/
538Nakagawa T, Itoh M, Ohta K, et al. Improvement of memory recall by quercetin in rodent contextual fear conditioning and human early-stage Alzheimer’s disease patients. Neuroreport. 2016;27(9):671–6. https://pubmed.ncbi.nlm.nih.gov/27145228/
539Nishimura M, Ohkawara T, Nakagawa T, et al. A randomized, double-blind, placebo-controlled study evaluating the effects of quercetin-rich onion on cognitive function in elderly subjects. FFHD. 2017;7(6):353–74. https://ffhdj.com/index.php/ffhd/article/view/334
540Kalus U, Pindur G, Jung F, et al. Influence of the onion as an essential ingredient of the Mediterranean diet on arterial blood pressure and blood fluidity. Arzneimittelforschung. 2000;50(9):795–801. https://pubmed.ncbi.nlm.nih.gov/11050695/
541Hertog MG, Feskens EJ, Hollman PC, Katan MB, Kromhout D. Dietary antioxidant flavonoids and risk of coronary heart disease: the Zutphen Elderly Study. Lancet. 1993;342(8878):1007–11. https://pubmed.ncbi.nlm.nih.gov/8105262/
542Briggs ADM, Mizdrak A, Scarborough P. A statin a day keeps the doctor away: comparative proverb assessment modelling study. BMJ. 2013;347:f7267. https://www.bmj.com/content/347/bmj.f7267
543Hwang HV, Tran DT, Rebuffatti MN, Li CS, Knowlton AA. Investigation of quercetin and hyperoside as senolytics in adult human endothelial cells. PLoS ONE. 2018;13(1):e0190374. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5760026/
544Khan S, Shukla S, Sinha S, Meeran SM. Epigenetic targets in cancer and aging: dietary and therapeutic interventions. Expert Opin Ther Targets. 2016;20(6):689–703. https://pubmed.ncbi.nlm.nih.gov/26667209/
545Geng L, Liu Z, Zhang W, et al. Chemical screen identifies a geroprotective role of quercetin in premature aging. Protein Cell. 2019;10(6):417–35. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6538594/
546Chondrogianni N, Kapeta S, Chinou I, Vassilatou K, Papassideri I, Gonos ES. Anti-ageing and rejuvenating effects of quercetin. Exp Gerontol. 2010;45(10):763–71. https://pubmed.ncbi.nlm.nih.gov/20619334/
547Zhu Y, Doornebal EJ, Pirtskhalava T, et al. New agents that target senescent cells: the flavone, fisetin, and the BCL–XL inhibitors, A1331852 and A1155463. Aging (Albany NY). 2017;9(3):955–63. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5391241/
548Wyld L, Bellantuono I, Tchkonia T, et al. Senescence and cancer: a review of clinical implications of senescence and senotherapies. Cancers (Basel). 2020;12(8):2134. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7464619/
549Li W, Qin L, Feng R, et al. Emerging senolytic agents derived from natural products. Mech Ageing Dev. 2019;181:1–6. https://pubmed.ncbi.nlm.nih.gov/31077707/
550Yousefzadeh MJ, Zhu Y, McGowan SJ, et al. Fisetin is a senotherapeutic that extends health and lifespan. EBioMedicine. 2018;36:18–28. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6197652/
551Maher P, Akaishi T, Abe K. Flavonoid fisetin promotes ERK-dependent long-term potentiation and enhances memory. PNAS. 2006;103(44):16568–73. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1637622/
552Farsad-Naeimi A, Alizadeh M, Esfahani A, Darvish Aminabad E. Effect of fisetin supplementation on inflammatory factors and matrix metalloproteinase enzymes in colorectal cancer patients. Food Funct. 2018;9(4):2025–31. https://pubmed.ncbi.nlm.nih.gov/29541713/
553Yousefzadeh MJ, Zhu Y, McGowan SJ, et al. Fisetin is a senotherapeutic that extends health and lifespan. EBioMedicine. 2018;36:18–28. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6197652/
554U.S. National Library of Medicine. Search results for fisetin. ClinicalTrials.gov. https://clinicaltrials.gov/ct2/results?cond=&term=fisetin&cntry=&state=&city=&dist=. Accessed May 29, 2021.; https://clinicaltrials.gov/ct2/results?cond=&term=fisetin&cntry=&state=&city=&dist=
555Grynkiewicz G, Demchuk OM. New perspectives for fisetin. Front Chem. 2019;7:697. https://pubmed.ncbi.nlm.nih.gov/31750288/
556Rabin BM, Joseph JA, Shukitt-Hale B. Effects of age and diet on the heavy particle-induced disruption of operant responding produced by a ground-based model for exposure to cosmic rays. Brain Res. 2005;1036(1–2):122–9. https://pubmed.ncbi.nlm.nih.gov/15725409/
557Miller MG, Thangthaeng N, Rutledge GA, Scott TM, Shukitt-Hale B. Dietary strawberry improves cognition in a randomised, double-blind, placebo-controlled trial in older adults. Br J Nutr. Published online January 20, 2021:1–11.; https://pubmed.ncbi.nlm.nih.gov/33468271/
558Gao Q, Qin LQ, Arafa A, Eshak ES, Dong JY. Effects of strawberry intervention on cardiovascular risk factors: a meta-analysis of randomised controlled trials. Br J Nutr. 2020;124(3):241–6. https://pubmed.ncbi.nlm.nih.gov/32238201/
559Schell J, Scofield RH, Barrett JR, et al. Strawberries improve pain and inflammation in obese adults with radiographic evidence of knee osteoarthritis. Nutrients. 2017;9(9):949. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5622709/
560Ezzat-Zadeh Z, Henning SM, Yang J, et al. California strawberry consumption increased the abundance of gut microorganisms related to lean body weight, health and longevity in healthy subjects. Nutr Res. 2021;85:60–70. https://pubmed.ncbi.nlm.nih.gov/33450667/
561Morotomi M, Nagai F, Watanabe Y. Description of Christensenella minuta gen. nov., sp. nov., isolated from human faeces, which forms a distinct branch in the order Clostridiales, and proposal of Christensenellaceae fam. nov. Int J Syst Evol. 2012;62(1):144–9. https://pubmed.ncbi.nlm.nih.gov/21357455/
562Waters JL, Ley RE. The human gut bacteria Christensenellaceae are widespread, heritable, and associated with health. BMC Biol. 2019;17(1):83. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6819567/
563Wang Y, Chang J, Liu X, et al. Discovery of piperlongumine as a potential novel lead for the development of senolytic agents. Aging (Albany NY). 2016;8(11):2915–26. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5191878/
564Yadav V, Krishnan A, Vohora D. A systematic review on Piper longum L.: bridging traditional knowledge and pharmacological evidence for future translational research. J Ethnopharmacol. 2020;247:112255. https://pubmed.ncbi.nlm.nih.gov/31568819/
565Kumar S, Kamboj J, Suman, Sharma S. Overview for various aspects of the health benefits of Piper Longum Linn. fruit. J Acupunct Meridian Stud. 2011;4(2):134–40. https://pubmed.ncbi.nlm.nih.gov/21704957/
566López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. 2013;153(6):1194–217. https://pubmed.ncbi.nlm.nih.gov/23746838/
567van Deursen JM. Senolytic therapies for healthy longevity. Science. 2019;364(6441):636–7. https://pubmed.ncbi.nlm.nih.gov/31097655/
568López-León M, Goya RG. The emerging view of aging as a reversible epigenetic process. Gerontology. 2017;63(5):426–31. https://pubmed.ncbi.nlm.nih.gov/28538216/
569Sallon S, Solowey E, Cohen Y, et al. Germination, genetics, and growth of an ancient date seed. Science. 2008;320(5882):1464. https://pubmed.ncbi.nlm.nih.gov/18556553/
570Yashina S, Gubin S, Maksimovich S, Yashina A, Gakhova E, Gilichinsky D. Regeneration of whole fertile plants from 30,000-y-old fruit tissue buried in Siberian permafrost. Proc Natl Acad Sci U S A. 2012;109(10):4008–13. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3309767/
571Rando TA, Chang HY. Aging, rejuvenation, and epigenetic reprogramming: resetting the aging clock. Cell. 2012;148(1–2):46–57. https://pubmed.ncbi.nlm.nih.gov/22265401/
572Rando TA, Chang HY. Aging, rejuvenation, and epigenetic reprogramming: resetting the aging clock. Cell. 2012;148(1–2):46–57. https://pubmed.ncbi.nlm.nih.gov/22265401/
573Американская кантри-певица и киноактриса. – Примеч. ред.
574BBC News. 1997: Dolly the sheep is cloned. On this day: 1950–2005. BBC. http://news.bbc.co.uk/onthisday/hi/dates/stories/february/22/newsid_4245000/4245877.stm. Published February 22, 2005. Accessed May 26, 2021.; https://news.bbc.co.uk/onthisday/hi/dates/stories/february/22/newsid_4245000/4245877.stm
575Gurdon JB. The cloning of a frog. Development. 2013;140(12):2446–8. https://pubmed.ncbi.nlm.nih.gov/23715536/
576Burgstaller JP, Brem G. Aging of cloned animals: a mini-review. Gerontology. 2017;63(5):417–25. https://pubmed.ncbi.nlm.nih.gov/27820924/
577López-León M, Goya RG. The emerging view of aging as a reversible epigenetic process. Gerontology. 2017;63(5):426–31. https://pubmed.ncbi.nlm.nih.gov/28538216/
578Song S, Johnson FB. Epigenetic mechanisms impacting aging: a focus on histone levels and telomeres. Genes. 2018;9(4):201. https://pubmed.ncbi.nlm.nih.gov/29642537/
579Rando TA, Chang HY. Aging, rejuvenation, and epigenetic reprogramming: resetting the aging clock. Cell. 2012;148(1–2):46–57. https://pubmed.ncbi.nlm.nih.gov/22265401/
580Burgstaller JP, Brem G. Aging of cloned animals: a mini-review. Gerontology. 2017;63(5):417–25. https://pubmed.ncbi.nlm.nih.gov/27820924/
581Wakayama S, Kohda T, Obokata H, et al. Successful serial recloning in the mouse over multiple generations. Cell Stem Cell. 2013;12(3):293–7. https://pubmed.ncbi.nlm.nih.gov/23472871/
582López-León M, Goya RG. The emerging view of aging as a reversible epigenetic process. Gerontology. 2017;63(5):426–31. https://pubmed.ncbi.nlm.nih.gov/28538216/
1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36  37  38  39  40  41  42  43  44  45  46  47  48  49  50  51  52  53  54  55  56  57  58  59  60  61  62  63  64  65  66  67  68  69  70  71  72 
Рейтинг@Mail.ru