bannerbannerbanner
Власть роботов. Как подготовиться к неизбежному

Мартин Форд
Власть роботов. Как подготовиться к неизбежному

Полная версия

В книге упоминаются социальные сети Instagram и/или Facebook, принадлежащие компании Meta Platforms Inc., деятельность которой по реализации соответствующих продуктов на территории Российской Федерации запрещена.

Переводчик Наталья Колпакова

Научный редактор Александр Каплан, д-р биол. наук

Редактор Вячеслав Ионов

Издатель П. Подкосов

Руководитель проекта И. Серёгина

Ассистент редакции М. Короченская

Корректоры Е. Аксенова, С. Чупахина

Компьютерная верстка А. Фоминов

Арт-директор Ю. Буга

Дизайн обложки Д. Изотов

Иллюстрация на обложке Shutterstock

© Martin Ford, 2021

© Издание на русском языке, перевод, оформление. ООО «Альпина нон-фикшн», 2022

Все права защищены. Данная электронная книга предназначена исключительно для частного использования в личных (некоммерческих) целях. Электронная книга, ее части, фрагменты и элементы, включая текст, изображения и иное, не подлежат копированию и любому другому использованию без разрешения правообладателя. В частности, запрещено такое использование, в результате которого электронная книга, ее часть, фрагмент или элемент станут доступными ограниченному или неопределенному кругу лиц, в том числе посредством сети интернет, независимо от того, будет предоставляться доступ за плату или безвозмездно.

Копирование, воспроизведение и иное использование электронной книги, ее частей, фрагментов и элементов, выходящее за пределы частного использования в личных (некоммерческих) целях, без согласия правообладателя является незаконным и влечет уголовную, административную и гражданскую ответственность.

* * *

Посвящается моей матери Шейле



Глава 1
Подрывное изменение близко

Тридцатого ноября 2020 года лондонская компания DeepMind, специализирующаяся в области искусственного интеллекта, – она принадлежит холдингу Alphabet, в который входит Google, – объявила об ошеломляющем, возможно эпохальном, прорыве. Речь шла об инновации в области вычислительной биологии, которая способна полностью преобразить сферу естественных наук и медицины. Компании удалось с помощью глубокой нейронной сети предсказать конечную структуру синтезируемой в живой клетке молекулы белка, исходя из генетического кода. Это событие стало итогом полувекового научного поиска и ознаменовало появление технологии, которая сулит нам беспрецедентное проникновение в тайны жизни, а также наступление новой эпохи инноваций в области медицины и фармакологии[1].

Молекулы белка – это длинные цепочки, звеньями которых являются 20 аминокислот. Гены, участки ДНК, задают точную последовательность аминокислот, составляющих молекулу белка, фактически рецепт ее изготовления. Однако этот генетический рецепт не оговаривает форму молекулы, которая имеет решающее значение для ее функционирования. Форма является результатом автоматического сворачивания молекулы в чрезвычайно сложную трехмерную структуру в течение нескольких миллисекунд после ее синтеза в клетке[2].

Предсказание трехмерной конфигурации, которую примет молекула белка, – одна из самых грандиозных научных проблем. Число возможных вариантов структуры практически бесконечно. Ученые посвящали решению этой задачи всю свою профессиональную жизнь, но результаты их совместных усилий были скромными. DeepMind использует технологию ИИ, впервые примененную компанией в системах AlphaGo и AlphaZero, известных триумфальными победами над людьми – лучшими в мире игроками в такие настольные игры, как го и шахматы. Очевидно, однако, что эпоха, когда ИИ ассоциировался главным образом с играми, близится к концу. Способность AlphaFold предсказывать структуру белков с точностью, не уступающей дорогостоящим и кропотливым лабораторным измерениям с использованием таких методов, как рентгеноструктурный анализ, – неоспоримое свидетельство того, что исследования в сфере искусственного интеллекта привели к появлению научного инструмента, способного преобразовать мир.

Этот прорыв произошел в то время, когда на Земле практически не осталось людей, не видевших изображения печально известной белковой молекулы, функция которой предопределяется ее трехмерной структурой. Речь идет о спайковом белке коронавируса, своего рода стыковочном механизме, посредством которого вирус прикрепляется к клетке и заражает ее. Научный прорыв DeepMind дарит надежду, что к следующей пандемии мы будем подготовлены значительно лучше. Одно из возможных применений системы – быстрый перебор существующих лекарственных средств в поисках наиболее эффективных против нового вируса. Благодаря этому действенное лечение будет доступно на самых ранних стадиях вспышки заболевания. Помимо прочего, технология DeepMind открывает перед нами целый ряд возможностей, среди которых разработка новейших лекарств и более глубокое понимание причин появления ошибок при формировании структуры белка – сбоев, связанных с такими недугами, как диабет, болезнь Альцгеймера и болезнь Паркинсона. Когда-нибудь эта технология найдет применение и в других сферах, например, поможет создать микробов, способных разлагать отходы вроде пластика или нефти[3]. Иными словами, эта инновация способна ускорить прогресс практически в любой области биохимии и медицины.

За последнее десятилетие разработчики искусственного интеллекта добились революционного прорыва и стали предлагать все больше практических решений, преобразующих мир вокруг нас. Главным ускорителем прогресса является «глубокое обучение» – метод машинного обучения на основе использования многослойных нейронных сетей наподобие той, что применила DeepMind. Базовые принципы работы глубоких нейронных сетей известны уже не одно десятилетие, но последние поразительные достижения обусловлены сочетанием двух тенденций в развитии информационных технологий. Во-первых, это появление несоизмеримо более мощных компьютеров, которые впервые позволили превратить нейронные сети в действительно эффективные инструменты. Во-вторых, это накопление колоссальных массивов данных в сегодняшней информационной экономике, которые критически важны для обучения нейронных сетей выполнению полезных задач. Действительно, доступность данных в масштабе прежде немыслимом – это, пожалуй, определяющий фактор нынешнего колоссального прогресса. Глубокие нейронные сети вбирают в себя и используют данные во многом так же, как синий кит, который питается крилем: он заглатывает огромное количество организмов в отдельности незначительных, но в сумме дающих энергию для поддержания жизни огромного организма.

По мере того как искусственный интеллект успешно проникает во все новые сферы, становится очевидным его превращение в технологию уникальной значимости. Например, в некоторых областях медицины приложения для диагностики на основе ИИ уже не уступают в точности лучшим докторам или даже превосходят их. Подлинный потенциал подобной инновации не сводится к ее способности переиграть какое-нибудь мировое светило, он, скорее, связан с легкостью масштабирования интеллекта, заключенного в этой технологии. В скором времени знания высококлассных врачей-диагностов будут за скромную плату распространяться через интернет по всему миру и станут доступными даже в регионах, где люди практически лишены возможности обратиться к обычному врачу, не говоря уже о лучших в мире специалистах.

Представьте теперь, что мы возьмем какую-нибудь чрезвычайно специфическую инновацию – скажем, диагностическую систему на основе ИИ или подрывную технологию DeepMind по моделированию белковой структуры – и умножим ее на практически неограниченное число приложений в других областях, от медицины до естествознания, промышленности, транспорта, энергетики, управления и любой другой сферы человеческой деятельности. В результате мы получим новый, уникальный по своим возможностям общедоступный ресурс – по сути, «интеллектуальное электричество». Гибкий ресурс, способный одним щелчком переключателя направить интеллектуальный потенциал практически на любую стоящую перед нами проблему! В конечном счете он научится не только анализировать данные и принимать решения, но и решать сложные задачи и даже проявлять креативность.

 

Цель этой книги – изучение будущего развития искусственного интеллекта, рассматривая его не как инновацию, а как обладающую уникальной масштабируемостью и потенциально подрывную технологию – мощный новый общедоступный ресурс, готовый совершить трансформацию, в перспективе более значимую, чем овладение электричеством. Аргументы и объяснения, которые я буду приводить на этих страницах, опираются по большей части на три составляющие моего профессионального опыта.

Во-первых, после выхода в 2015 году в свет моей книги «Роботы наступают: Развитие технологий и будущее без работы»[4] я выступил с докладом о последствиях появления искусственного интеллекта и роботов на десятках технологических конференций, региональных собраний, а также корпоративных и академических мероприятий. Я побывал более чем в 30 странах и имел возможность посещать исследовательские лаборатории, присутствовать на демонстрации революционных технологий и участвовать в дебатах о перспективах разворачивающейся революции искусственного интеллекта с техническими экспертами, экономистами, руководителями предприятий, инвесторами и политиками, а также неспециалистами, которые видят происходящие изменения и начинают из-за них беспокоиться.

Во-вторых, в 2017 году я начал работать с командой из французского банка Société Générale над созданием фондового индекса, который позволил бы инвесторам извлекать непосредственную выгоду из революции в области искусственного интеллекта и робототехники. В качестве эксперта-консультанта я участвовал в выработке стратегии на основе понимания ИИ как нового мощного общедоступного ресурса, создающего стоимость и являющегося источником трансформации бизнеса в широком комплексе отраслей. В результате появился индекс Société Générale Rise of Robots, а потом Lyxor Robotics и AI ETF[5] (биржевой индексный фонд) на основе этого индекса.

Наконец, на протяжении 2018 года я имел возможность обсудить широкий круг вопросов с 23 ведущими мировыми исследователями ИИ и предпринимателями в области искусственного интеллекта. Это настоящие Эйнштейны в своей сфере – четверо из них удостоились премии Тьюринга, эквивалента Нобелевской премии в области компьютерных наук. Наши беседы, посвященные будущему искусственного интеллекта, а также рискам, сопутствующим прогрессу, собраны в моей книге «Архитекторы интеллекта: Вся правда об искусственном интеллекте от его создателей»[6], изданной в США в 2018 году. Я активно использовал эту уникальную возможность, чтобы узнать, о чем думают выдающиеся умы в области ИИ, и содержание этой книги в значительной степени опирается на их идеи и прогнозы.

Представление искусственного интеллекта как нового электричества – хорошая модель для рассуждений о дальнейшем развитии этой технологии, которая в конечном счете затронет практически все области экономики, общественной жизни и культуры. Следует, однако, сделать одну существенную оговорку. Электричество обычно рассматривается как однозначно полезная сила. Пожалуй, трудно отыскать в развитой стране человека – исключая разве что самых убежденных отшельников, – имеющего основания жаловаться на электрификацию. Искусственный интеллект – иное дело: у него есть темная сторона, и ему сопутствуют реальные опасности как для отдельных людей, так и для общества в целом.

Постоянно развивающийся искусственный интеллект способен совершить на рынке труда и в экономике в целом переворот беспрецедентного масштаба. Практически любую работу, рутинную и предсказуемую по своему характеру, иными словами, почти любые профессиональные обязанности, исполнитель которых постоянно решает одни и те же задачи, можно полностью или частично автоматизировать. Исследования показали, что до половины работающих американцев заняты подобной предсказуемой деятельностью и в одних только Соединенных Штатах могут со временем исчезнуть десятки миллионов рабочих мест[7]. Удар будет нанесен не только по низкооплачиваемым неквалифицированным работникам. Многие администраторы и специалисты также выполняют относительно рутинные обязанности. Особенно высок риск автоматизации предсказуемой интеллектуальной деятельности, поскольку ее может выполнять программное обеспечение. В отличие от этого, для ручного труда нужен дорогостоящий робот.

Вопрос влияния автоматизации на трудовые ресурсы остается дискуссионным. Будет ли создано достаточно новых рабочих мест в тех сферах, автоматизация которых невозможна, чтобы поглотить трудящихся, теряющих работу рутинного характера? Если да, то хватит ли у этих трудящихся умений, способностей и личностных качеств, чтобы успешно перейти на вновь созданные рабочие места? Едва ли большинство бывших водителей грузовиков или работников предприятий быстрого питания смогут стать инженерами-робототехниками – или, если уж на то пошло, специалистами по уходу за престарелыми. На мой взгляд, который я изложил в книге «Роботы наступают», значительной доле нашего трудоспособного населения в конечном счете грозит опасность остаться за бортом из-за развития ИИ и робототехники. Кроме того, как мы скоро увидим, есть все основания предполагать, что пандемия коронавируса и связанный с ней экономический спад ускорят воздействие искусственного интеллекта на рынок труда.

Даже если не рассматривать полное исчезновение рабочих мест вследствие автоматизации, то технологии уже влияют на рынок труда в других отношениях, которые должны встревожить нас. Существует опасность того, что на рабочие места, традиционно занимаемые представителями среднего класса, станут требоваться менее квалифицированные исполнители. Низкооплачиваемый работник, слабая подготовка которого компенсируется технологиями, сможет занять должность, которая прежде предполагала более высокий размер оплаты труда. Люди все чаще трудятся под контролем алгоритмов, которые следят за работой или задают ее темп, фактически превращая их в виртуальных роботов. Многие новые рабочие места создаются в гиг-экономике, в условиях которой трудящиеся обычно имеют непредсказуемый режим работы и доходы. Все это усиливает неравенство и в будущем может обернуться унижающими человеческое достоинство условиями труда для все большей доли работников.

Помимо негативного влияния на рынок труда и экономику, развитие искусственного интеллекта повлечет за собой множество других неприятных последствий. Наиболее явная из них – угроза нашей безопасности в целом. Имеются в виду кибератаки с использованием ИИ на физическую инфраструктуру и важнейшие системы, которые все в большей степени становятся взаимосвязанными, а также угрозы демократическому процессу и общественному устройству. Приписываемое России вмешательство в президентские выборы 2016 года является относительно безобидной демонстрацией того, что может ждать нас в будущем. Искусственный интеллект со временем способен стать источником еще более совершенных «фейковых новостей», поскольку позволяет фабриковать фотографии, аудио- и видеозаписи, практически неотличимые от настоящих, а армии по-настоящему продвинутых ботов когда-нибудь оккупируют социальные сети, будут сеять смуту и, потенциально, формировать общественное мнение.

В мире – особенно в Китае – системы слежения, использующие распознавание лиц и другие технологии на основе ИИ, применяются для колоссального увеличения власти и влияния авторитарных правителей и уничтожения неприкосновенности частной жизни. В Соединенных Штатах были случаи, когда системы распознавания лиц демонстрировали предвзятость по расовому или гендерному признаку, как и алгоритмы, использующиеся для отбора резюме и даже предоставления рекомендаций судьям в системе уголовного правосудия.

Пожалуй, самая пугающая и близкая угроза – это разработка полностью автономного оружия, способного убивать без обязательного участия человека, санкционирующего его применение. Такое оружие в принципе может применяться против целых народов, и от него будет крайне трудно защититься, особенно если оно попадет в руки террористов. Многие представители сообщества исследователей ИИ являются убежденными противниками такого развития событий, и в ООН выдвинута инициатива по запрету подобных систем вооружений.

Не исключено, что в дальнейшем мы столкнемся с еще более серьезной опасностью. Может ли искусственный интеллект представлять экзистенциальную угрозу для человечества? Не создадим ли мы однажды «суперинтеллектуальную» машину – нечто, настолько превосходящее нас, что оно сможет – намеренно или случайно – нанести нам вред? Это, конечно, довольно умозрительное опасение, и данная проблема встанет лишь в случае, если нам когда-нибудь удастся создать действительно разумную машину. Пока это тема научной фантастики. Тем не менее реальный искусственный интеллект человеческого уровня – заветная мечта разработчиков, и немало очень умных людей относятся к этой опасности со всей серьезностью. Такие выдающиеся люди, как Илон Маск и покойный Стивен Хокинг, предупреждали об угрозе выхода ИИ из-под контроля. Маск, например, наделал немало шума в СМИ своим заявлением, что исследования в области искусственного интеллекта – это попытки «вызвать демона» и что «ИИ опаснее ядерного оружия»[8].

С учетом этих обстоятельств возникает вопрос, стоит ли нам открывать ящик Пандоры. Как бы то ни было, человечество не может позволить себе отказаться от искусственного интеллекта. Многократно расширяя наши умственные и творческие возможности, ИИ способствует инновациям практически в каждой области человеческой деятельности. Он позволяет нам ожидать появления новых лекарств и методов лечения, более эффективных источников чистой энергии и множества других важных прорывов. Безусловно, ИИ уничтожит рабочие места, но в то же время сделает более доступными (в ценовом и физическом отношениях) товары и услуги, которые производятся в экономике. По прогнозу консалтинговой фирмы PwC, к 2030 году ИИ добавит в мировую экономику около $15,7 трлн, что особенно необходимо сейчас, когда мы надеемся на восстановление после масштабного экономического кризиса, вызванного пандемией коронавируса[9]. Что, пожалуй, самое важное – искусственный интеллект превратится в незаменимый инструмент, имеющий ключевое значение для решения наших самых сложных проблем, включая изменение климата и деградацию окружающей среды, неизбежную новую пандемию, нехватку энергии и чистой воды, нищету и недоступность образования.

 

Следует в полной мере использовать потенциал искусственного интеллекта в интересах прогресса – но с открытыми глазами. Риски необходимо устранять. Требуется правовое регулирование и в некоторых случаях запрет определенных видов использования ИИ. Все это должно происходить уже сегодня, потому что будущее наступит значительно раньше, чем мы к нему подготовимся.

Было бы преувеличением утверждать, что эта книга предлагает «дорожную карту» для движения в будущее искусственного интеллекта. Никто не знает, насколько быстро будет развиваться ИИ и как именно использоваться, какие новые компании и отрасли появятся или какие угрозы окажутся наиболее серьезными. Будущее искусственного интеллекта непредсказуемо, поскольку это подрывная технология. «Дорожной карты» не существует. Нам придется действовать по ситуации. Надеюсь, эта книга поможет подготовиться к грядущему – верно понять происходящую на наших глазах революцию, отделить хайп и погоню за сенсациями от реальности и найти наилучшие способы обеспечения процветания каждому человеку и обществу в целом в будущем, которое мы создаем.

Глава 2
ИИ как новое электричество

Электричество, которое некогда воспринималось как занимательное явление, пригодное разве что для фокусов и экспериментов на потеху толпы, бесспорно, сформировало современную цивилизацию и обусловило саму возможность ее существования. В мире, где гарантированный доступ к электроснабжению часто воспринимается как данность, легко забыть, каким долгим и трудным было восхождение электричества к своему господствующему положению. Лишь в 1879 году – через 127 лет после знаменитого эксперимента Бенджамина Франклина с воздушным змеем в 1752 году – Томас Эдисон наконец довел до ума свою лампу накаливания. После этого развитие событий ускорилось. В том же году в Великобритании был принят Закон об электрическом освещении Ливерпуля, заложивший основы для устройства первого в стране уличного электрического освещения, а через три года введены в действие электростанции Pearl Street Power Plant в Нью-Йорке и Edison Electric Light Station в Лондоне. Однако к 1925 году была электрифицирована лишь половина домов в Соединенных Штатах. Потребовалось еще несколько десятилетий и принятие Франклином Рузвельтом Закона об электрификации сельских районов, чтобы электричество превратилось в привычное нам общедоступное удобство.

Для тех из нас, кто живет в развитом мире, практически все вокруг так или иначе связано с электричеством или вообще возможно лишь благодаря ему. Электричество является, пожалуй, лучшим – и, безусловно, самым долгоиграющим – примером технологии общего назначения: иначе говоря, инновацией, которая повсеместно масштабируется в экономике и обществе, трансформируя все их аспекты. К технологиям общего назначения относится также паросиловая установка, положившая начало промышленной революции, но сейчас имеющая сильно ограниченное применение, в частности на атомных электростанциях. Двигатель внутреннего сгорания также сыграл преобразующую роль, но сегодня нетрудно представить себе будущее без бензиновых и дизельных моторов, на смену которым придут электродвигатели. Если не разразится какая-нибудь апокалиптическая катастрофа, практически невозможно вообразить будущее без электричества.

Таким образом, было бы чрезвычайно самонадеянно утверждать, что искусственный интеллект превратится в технологию общего назначения, сопоставимую по масштабу и возможностям с электричеством. Тем не менее есть веские причины полагать, что именно к этому мы идем: ИИ во многом так же, как электричество, со временем затронет и преобразует практически все.

Искусственный интеллект уже оказывает влияние на все отрасли экономики, в том числе на сельское хозяйство, промышленное производство, здравоохранение, финансовый сектор и розничную торговлю. Эта технология проникает даже в области, которые мы считаем наиболее человеческими. Чат-боты на основе ИИ обеспечивают круглосуточный доступ к услуге психологического консультирования. Технология глубокого обучения приводит к появлению новых форм графического искусства и музыки. Удивляться тут нечему. В конце концов, практически все ценное, что было создано людьми, является продуктом нашего интеллекта – способности учиться, изобретать, творчески решать проблемы. Усиливая, дополняя или заменяя наш собственный интеллект, ИИ неизбежно превратится в самую могущественную и наиболее широко применяемую технологию. Возможно, он однажды станет одним из самых эффективных инструментов, который поможет нам выйти из кризиса, вызванного коронавирусом.

Более того, высоки шансы, что искусственный интеллект превратится в господствующую технологию намного быстрее, чем это было в случае электричества. Дело в том, что значительная часть инфраструктуры, необходимой для развертывания ИИ, – включая компьютеры, интернет, мобильные службы передачи данных и особенно мощнейшие ресурсы для облачных вычислений, поддерживаемые такими компаниями, как Amazon, Microsoft и Google, – уже имеется. Представьте, как быстро произошла бы электрификация, если бы большая часть электростанций и линий электропередачи уже была построена к тому времени, когда Эдисон изобрел лампу накаливания. Искусственный интеллект готов преобразовать наш мир – и это может случиться намного раньше, чем мы предполагаем.

  Ewen Callaway, “‘It will change everything’: DeepMind’s AI makes gigantic leap in solving protein structures,” Nature, November 30, 2020, www.nature.com/articles/d41586-020-03348-4.   Andrew Senior, Demis Hassabis, John Jumper and Pushmeet Kohli, “AlphaFold: Using AI for scientific discovery,” DeepMind Research Blog, January 15, 2020, deepmind.com/blog/article/AlphaFold-Using-AI-for-scientific-discovery.   Ian Sample, “Google’s DeepMind predicts 3D shapes of proteins,” The Guardian, December 2, 2018, www.theguardian.com/science/2018/dec/02/google-deepminds-ai-program-alphafold-predicts-3d-shapes-of-proteins.
4Форд М. Роботы наступают: Развитие технологий и будущее без работы. – М.: Альпина нон-фикшн, 2019.
5Lyxor Robotics и AI UCITS ETF, тикер ROAI.
6Форд М. Архитекторы интеллекта: Вся правда об искусственном интеллекте от его создателей. – СПб.: Питер, 2020.
  См., например: Carl Benedikt Frey and Michael Osborne, “The future of employment: How susceptible are jobs to computerisation?” Oxford Martin School, University of Oxford, Working Paper, September 17, 2013, www.oxfordmartin.ox.ac.uk/downloads/academic/future-of-employment.pdf, p. 38.   Matt McFarland, “Elon Musk: ‘With artificial intelligence we are summoning the demon,’” Washington Post, October 24, 2014, www.washingtonpost.com/news/innovations/wp/2014/10/24/elon-musk-with-artificial-intelligence-we-are-summoning-the-demon/.   Anand S. Rao and Gerard Verweij, “Sizing the prize: What’s the real value of AI for your business and how can you capitalise?” PwC, October 2018, www.pwc.com/gx/en/issues/analytics/assets/pwc-ai-analysis-sizing-the-prize-report.pdf.
1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19 
Рейтинг@Mail.ru