Министерство образования и науки Российской Федерации
Федеральное государственное бюджетное образовательное учреждение высшего образования
«Московский педагогический государственный университет»
Рецензенты:
Т. Н. Доронова, кандидат педагогических наук, старший научный сотрудник, заведующая отделом дошкольного образования ФГАУ «ФИРО»
Т. И. Ерофеева, кандидат педагогических наук, профессор кафедры дошкольной педагогики МПГУ
Учебная дисциплина «Теория и методика развития математических представлений у детей дошкольного возраста» занимает одно из важных мест в профессиональной подготовке педагогов для системы дошкольного образования.
Пособие составлено в соответствии с новыми Федеральными государственными образовательными стандартами высшего образования РФ. Содержание материалов пособия опирается на рабочую программу учебной дисциплины, современные нормативные документы высшего и дошкольного образования, на исследования в области методических и психолого-педагогических наук.
В ходе изучения учебной дисциплины предусматривается усвоение студентами теоретических и дидактических основ развития у детей математических представлений. Студенты анализируют вопросы становления методики обучения детей математике, современные проблемы и концепции математического образования дошкольников. Знакомятся с содержанием, формами и методами формирования математических знаний, дидактическими средствами обучения. В процессе изучения дисциплины предполагается самостоятельная деятельность студентов, в ходе которой они изучают и анализируют научно-методическую литературу, пишут рефераты, конспекты занятий, упражняются в разработке дидактических игр и упражнений, выполняют творческие задания, разрабатывают диагностические методики, готовят консультации для воспитателей и родителей. Для самостоятельной подготовки к контрольным мероприятиям предложен перечень примерных вопросов к зачету и экзамену, проверочные тестовые задания. Представлена тематика рефератов, курсовых, выпускных квалификационных работ. Даны рекомендации к их написанию с примерными планами и списками литературы. Выполнение практических заданий должно показать уровень понимания и осмысления изученного материала.
1. Характеристика понятия «множество».
2. Понятие о числе, его виды и функции.
3. Натуральное число, натуральный ряд чисел и его свойства.
4. Сущность счета и вычислительной деятельности.
Понятия «множество», «число», «счет» являются центральными при обучении дошкольников математике. Эти знания составят теоретическую основу для осмысления содержания и методики развития исходного математического понятия у детей.
При изучении темы рассматриваются основные положения Г. Кантора о множестве. Изучаются основные понятия теории множеств: множество, элемент множества, подмножество, пустое множество, характеристическое свойство или условие задания множества. Рассматриваются основные виды и операции над множествами и др. Затем необходимо остановиться на основном способе сравнения множеств – установлении взаимно однозначного соответствия, понятии эквивалентности. С позиции теоретико-множественного подхода необходимо дать определение натурального числа. Анализируется роль теории множеств для понимания того, как дети осваивают представление о числе и счете. Анализируется аксиоматическое определение системы натуральных чисел. Для этого необходимо изучить систему аксиом для определения натурального числа Дж. Пеано.
При подготовке к третьему вопросу следует знать, что натуральное число имеет несколько функций, и с некоторыми из них дети знакомятся уже в дошкольном возрасте.
Рассматривается вопрос о сущности счета и вычислительной деятельности, уточняются их отличительные особенности.
1. Приведите по 1 примеру к каждой операции над множествами, зарисовав их кругами Эйлера – Венна.
2. Приведите примеры, как дети используют в жизненных ситуациях для определения равенства предметов свойства симметричности и транзитивности эквивалентных множеств.
3. Приведите по 2 примера множеств, которые тождественны и которые эквивалентны, но не тождественны.
4. Приведите по 2 примера дискретных, бесконечных, непрерывных, конечных множеств.
1. Верещагин Н. К., Шенъ А. Лекции по математической логике и теории алгоритмов. Ч. 1. Начало теории множеств. – 4-е изд., доп. – М.: МЦНМО, 2012. – 112 с.
2. Энциклопедия «Кругосвет». – www.krugosvet.ru (Теория множеств).
1. Виленкин Н. Я. Рассказы о множествах. – М., 2005.
2. Кожухов И. Б., Прокофьев А. А. Справочник по математике. – М., 1999. – С. 5–8, 16–24, 30–54.
3. Попов Ю. П., Пухначев Ю. В. Математика без формул. Кн. 1. -М.: КомКнига, 2010. -232 с.
4. Попов Ю. П., Пухначев Ю. В. Математика без формул. Кн. 2. -М.: Либроком, 2011. -242 с.
5. Рыбников К. К. Введение в дискретную математику и теорию решения экстремальных задач на конечных множествах: Учебное пособие. – М.: Гелиос АРВ, 2010. – 320 с.
6. Стойлова Л. П., Фрейлах Н. И. Теоретические основы формирования элементарных математических представлений у дошкольников. – М., 1997.
7. Шпорер 3. Ох, эта математика! – М.: Педагогика, 1985.
8. Энциклопедия для детей. Математика. Т. 11 / Под ред. М. Д. Аксенова. – М.: Аванта+, 2000.
1. Этапы развития представлений о числе и счете в истории человечества.
2. История возникновения систем счисления и видов письменной нумерации. Характеристика десятичной системы счисления.
3. Этапы развития системы измерения протяженности предметов, массы и объема веществ.
4. Генезис геометрических представлений в истории человечества.
5. История мер времени.
Практическое занятие посвящено изучению истории возникновения и развития основных понятий математики.
Числа возникли из потребности счета и измерения и претерпели длительный путь исторического развития. Зная пути развития в человеческом обществе деятельности счета и измерения, можно яснее представить значение тех знаний, которые предстоит освоить детям. Анализируя данный исторический материал, следует выделить этапы развития понятия числа и счета в истории человечества.
Разбирая вопрос о письменной нумерации, следует дать характеристику различным видам записи чисел (иероглифы, клинопись, алфавитные системы записи чисел, римские и арабские цифры), показать сущность позиционной (аддитивной) и непозиционной (мультипликативной) систем счисления, познакомиться с правилами перевода из одной системы счисления в другую. Необходимо определить преимущества и отличительные черты позиционной десятичной системы счисления, понятия разряда, класса, отношений между ними.
Изучая историю понятия числа, необходимо рассмотреть действия над числами. Кроме того, необходимо уяснить сущность счетной и вычислительной деятельности.
В процессе изучения этой темы необходимо рассмотреть роль вычислительных приборов (абак, счеты, арифмометр, ЭВМ, персональный компьютер) в развитии как самой математики, так и методики обучения математике.
Основные единицы измерения в процессе развития человеческой цивилизации прошли сложный эволюционный путь. При его рассмотрении необходимо ориентироваться на основные системы единиц измерения величин (русскую, английскую и метрическую) и самостоятельно выделить стадии в истории развития единиц измерения протяженностей, массы и объема веществ в истории человечества.
Необходимо рассмотреть основные геометрические понятия в истории человечества, историю происхождения названий геометрических фигур. Вклад известных математиков в развитие геометрической науки.
1. Приведите примеры того, как считали наши предки, находясь на этапах попарного счета и счета числами-качествами совокупностей.
2. Наименование какой цифры дало название всем остальным цифрам в русском языке и почему?
3. Переведите число 149 в следующие виды письменной нумерации: римскую, вавилонскую, племени майя.
4. Составьте кроссворд на тему: развитие понятий о геометрических фигурах и форме предметов в истории человечества (не менее 10 слов).
5. Кто был выше Дюймовочка или Мальчик-с-пальчик? Обоснуйте ответ.
6. Какой год в нашей стране был самым коротким и почему?
7. Какого размера был Конек-Горбунок в метрической системе измерения?
1. Просветов Г. И. История математики. – М.: Альфа-Пресс, 2017.
2. Манкевич Р. История математики. – М.: Ломоносовъ, 2011. -256 с.
3. Николаева Е. А. История математики от древнейших времен до XVIII века: учебное пособие / Е. А. Николаева. – Кемерово: Кемеровский государственный университет, 2012. – 112 с.
1. Бурау И. Я. Загадки мира цифр и чисел. – Донецк, 1996. – 448 с.
2. Виленкин Н. Я. За страницами учебника математики. – М., 2008.
3. Выготский Л. С., Лурия А. Р. Числовые операции примитивного человека // Этюды по истории поведения. – М., 1993. – С. 108–118.
4. Рыбников К. А. Возникновение и развитие математической науки. – М., 1987. – С. 5–13.
5. Свечников А. Путешествие в историю математики, или как люди учились считать. – М., 1995.
6. Энциклопедия для детей. Математика. Т. 11 / Под ред. М. Д. Аксенова. – М.: Аванта+, 2000.