Механизмы неорганических реакций выплавки чугуна и стали

Константин Владимирович Ефанов
Механизмы неорганических реакций выплавки чугуна и стали

Такой подход соответствует подходу описания структур в неорганической и органической химии и по-видимому является справедливым для образования геометрии в ячейке металла. Однако, после этого, валентные электроны делокализуются по всей решетке металла, при этом за счет близкого расстояния между атомами, электронные орбитали существенно перекрываются. В методе молекулярных орбиталей, применяемом для отдельных молекул, считается, что атомы теорияют индивидуальность и электроны образуют общую для молекул орбиталь. В металле электроны образуют общий для всей решетки металла электронный газ.

В случае перекрывания орбиталей N атомов в твердом теле, образуются N новых орбиталей, относящихся к твердому телу. Уровни энергий орбиталей в металле расположены близко и образуют энергетические полосы [10,с.138]:


На этой схеме на каждом уровне находятся 2 электрона и при общем количестве N электронов, нижние уровни N/2 будут дважды занятыми.

Электрический ток является упорядоченным движением электронов. Приведем описание на основании метода молекулярных орбиталей [10,с.138]. Движение электронов может происходить, если электроны получают энергию и переходят на высокие незанятые уровни. То есть структуры металлов содержат незанятые верхние энергетические уровниъ. Для полупроводников незанятая зона близко расположена с занятой и переход возможет только при повышении энергии с повышением температуры.

Взаимодействующие в решетке атомы железа являются квантовой системой, для которой выполняется запрет Паули, т.е. на каждом энергетическом уровне в кристалле не может быть более двух электронов на одном энергетическом уровне. При одинаковой энергии нескольких g энергетических уровней (квантовых состояний), т.е. при вырождении, на каждом уровне может находится только 2g электронов (g – степень вырождения). 2N электронов индивидуальных атомов железа с высшего уровня разместятся попарно на N уровне полосы в криталлической решетке.

Энергия электронов в металле квантуется, т.е. занимает определенные уровни энергии (или дискретные значения). Каждый уровень индивидуального атома железа расщепляется в кристаллической решетке из N атомов – на N близкорасположенных уровней, составляющих или зону [11,с.247]. Валентные электроны на внешних электронов больше возмущаются, чем электроны на внутренних орбиталях атома. Схема расщепления уровней для внешних валентных электронов и внутренних в зависимости от расстояния между атомами железа показана на рисунке:



Как видно из рисунка перекрывание внутренних орбиталей практически отсутствует. Расщеплению подвергаются орбитали, занятые валентными электронами и свободные орбитали высшего уровня.

Величины энергетических уровней валентных электронов в кристаллической решетке металла объединяются в зоны, которые разделяются запрещенными зонами (промежутками) без разрешенных значений энергии, т.е. в которых электроны находиться не могут [11,с.248]. Ширина разрешенной зоны составляет несколько электронвольт [11,с.249]. Уровни в зоне располагаются максимально близко с ростом числа атомов железа в решетке.

Валентной зоной является нижняя разрешенная зона в кристаллической решетке, которая равна энергетическому уровню валентных электронов в основном состоянии индивидуального атома. Остаются свободными разрешенные зоны с более высокой энергией.

Савельев приводит три возможных случая заполнения, определяемые степенью заполнения электронами валентной зоны и ширины запрещенной зоны по данным [11,с.249]:



В металлах валентная зона и зона проводимости перекрываются.

Энергия электрического поля может переводить электроны на более высокие энергетические положения и поэтому электроны могут ускоряться в направлении, противоположном направлению поля. Неполное заполнение валентной зоны происходит при перекрывании зон или при нахождении только одного электрона на последнем верхнем уровне. В случае перекрывания зон, число уровней в зоне проводимости будет больше N и электроны не займут все уровни зоны в т.ч. при их количестве 2N. В случае только одного электрона на верхнем уровне, N электронов попарно займут половину уровней валентной зоны.

Распределение электронов по уровням показывается при помощи кривой распределения Ферми [11,с.24]:



Механизмы реакций выплавки чугуна

Сырьем для выплавки стали является чугун. Чугун получают по реакциям восстановления железа из оксидов железных руд. Железные руды представляют собой породу, содержащую железо в виде соединений Fe3O4 (магнитный железняк, 55…60% Fe), Fe2O3 (красный железняк, 55…60% Fe), 2Fe2O3x3H2O и Fe2O3xnH2O (бурый железняк 33…55% Fe), FeCO3 (шпатовый железняк, 30…40% Fe) и вторую часть в виде неорганических соединений SiO2, Al2O3, CaO, MgO.

Чугун выплавляют доменной печи, в которой химические реакции и физические процессы организованы при противоточном движении поднимающихся горючих газов и двужущегося вниз чугуна. В работе [5,с.30] приводятся схема реакций по высоте доменной печи:



Механизмы реакций, как правило, в неорганической и органической химии описываются для индивидуальных молекул, присутствующих в газовой и жидкой фазе.

К процессу выплавки чугуна такой подход неприменим, так как атому железа находятся в кристаллической решетке. Подход органической химии может использоваться только для жидкой фазы, где нет влияния кристаллической решетки.

Механизм реакции соединений железа, имеющих кристаллическую решетку может быть исследован квантово-химическим расчетом в специальных компьютерных пакетах или исследован экспериментально. Как правило, присутствуют два метода и затем сравниваются результаты, т.е. соответствие квантово-химических расчетов экспериментальным данным; и объяснению полученных результатом эксперимента с помощью квантово-химических расчетов и представления структур на пути от исходных веществ через промежуточные соединения до продуктов химического взаимодействия.

В настоящее время для изучения химизма реакций железоуглеродистых соединений и соединений оксидов железа используют квантово-химические расчеты и проводят физико-химические методы анализа соединений для подтверждения структуры по результатам эксперимента.

Как известно, процесс окисления железа в доменной печи проходит по условной схеме:

Fe2O3 → Fe3O4 → FeO →Fe

В химии кристаллов играет роль химической взаимодействие с окислителем на поверхности соединения кристалла и перегруппировка кристалла.

Именно из этих двух аспектов и состоит описание механизма неорганической реакции окисления железа.

Отметим, что для органической химии (в нефтехимии), важны только стадия адсорбции реагента на решетку, перегруппировка в органической молекуле (переходное соединение с образованием связи с атомами решетки, за счет которых связи в органической молекуле ослабляются и становится возможной химическая реакция) и десорбция.

Запись последовательно выделенных по высоте доменной печи соединений не позволит описать механизм реакции так как не показывает процессов изменения конфигурации, а только фактически фиксирует промежуточные вещества.

Механизм реакции можно получить только путем квантово-механического расчета кластера атомов кристаллической решетки. В процессе расчета наглядно видны процессы химических взаимодействий атомов, изменения электронной плотности для всего кластера, перегруппировки атомов в решетке кристалла. В результате видно, как совокупность перечисленных процессов приводит к образованию одних соединений из других. А совпадение с экспериментальными данными подтверждает правильность квантово-механического расчета.

Важно, чтобы в расчет вводилась корректная конфигурация исходных веществ, получались корректные конфигурации решеток промежуточных веществ и получалась правильная конфигурация решетки продукта реакции.

__

В работе [29] авторами установлен ! механизм реакций, протекающий по схеме:

Fe2O3 → Fe3O4 → FeO →Fe

Авторы работы [29] уточняют схему:

α-Fe2O3 → γ-Fe2O3 → Fe3O4 → FeO

Также авторы [29] приводят графические результаты расчетов структур соединений по схеме.

Вместе с тем, в работе [30] авторами приводятся струкруты соединений железа с углеродом и железа с кислородом (оксидов).

__

Авторы [29] не описывали механизм реакций, как это принято в литературе по механизмам химических реакций. Используя графические реузльтаты авторов [29] и [30] можно впервые записать механизм химической реакции в форме, как это принято в литретуре по механизмам химических реакций.

Для справки приведем подходы к описанию механизмов неорганических и химических реакций в химической литературе. В работах по неорганической химии [12], [13], [14] реакции описываются максимум брутто-формулами и приводятся текстом данные о структуре соединений. В литературе по механизмам неорганических реакций координационных соединений металлов в растворе [15], [16], механизмы реакций описываются аналогично описанию в книгах по органической химии – для индивидуальной молекулы комплексного соединения в растворе (без учета влияния атомов кристаллической решетки). Механизмы радикальных цепных реакций [17] описываются отдельными стадиями, так же как реакции взаимодействия с металлической стенкой сосуда [18]. В органической химии принято описание с обозначением стрелками смещения электронной плотности и используются устаревшие структуры изображения веществ, например, в работах [31], [32].

 
Рейтинг@Mail.ru