bannerbannerbanner
Логика. Краткий курс

Коллектив авторов
Логика. Краткий курс

Полная версия

4. Классическая логика высказывании и предикатов

1

Под именем понимается выражение языка, обозначающее отдельный предмет, совокупность сходных предметов, свойства, отношения. Выражение языка становится именем, если оно выступает в роли подлежащего или именной части сказуемого в простом предложении: «S есть Р» (S – подлежащее, Р – сказуемое). Например, высказывание «роза – это цветок» своими составляющими имеет имена «роза» и «цветок».

2

Высказывание – грамматически правильное предложение, которое может быть истинным или ложным. В логике само понятие высказывания – ключевое, но не допускает универсального определения для разных ее разделов. Но любое высказывание описывает некоторую ситуацию и может быть истинным или ложным.

Высказывание истинно, если соответствует реальной ситуации, и ложно, если не соответствует ей. «Истина» и «ложь» представляют собой истинные значения высказывания.

3

Вспомогательные слова «и», «либо, либо», «если, то» называют логическими связками. Сложные высказывания можно строить с помощью логических связок. Так, из высказываний «светит солнце» и «идет дождь» можно образовать сложные высказывания типа «если светит солнце, то идет дождь», «светит солнце и идет дождь» и т. п.

4

Укажем самые важные способы построения сложных высказываний. Отрицанием называется такая логическая связка, с помощью которой из данного высказывания получается высказывание с противоположным логическим значением.

Обозначим высказывания буквами А, В, С,…, отрицание высказывания – символом ~. Тогда если высказывание А истинно, то его отрицание ложно, и если А ложно, его отрицание истинно. Например, отрицанием высказывания «три является четным числом» служит высказывание «три не является четным числом».

5

Сложное высказывание, полученное с помощью двух (или более) высказываний при помощи слова «и», называется конъюнкцией. Заменяя слово «и» на «или» в предыдущем определении, получаем дизъюнкцию высказываний.

Высказывания, получаемые описанными способами, представляют собой предмет изучения логики высказываний. Она предполагает, что любое высказывание имеет свое логическое значение, зависящее от значений простых высказываний, входящих в него, а также и от характера их связи.

При помощи таблиц истинности в случае любого сложного высказывания можно определить, при каких значениях истинности входящих в него простых высказываний это высказывание истинно, а при каких – ложно.

Важнейшим предметом изучения логики высказываний служат логические законы, высказывания, имеющие истинные значения независимо от логических значений его составляющих.

6

Логика высказываний – это теория логических связей высказываний, не зависящих от внутреннего строения простых высказываний; это совокупность формул или сложных высказываний, записанных на специальном языке, включающем множество переменных: А, В, С,…, А1, В1, С1…, представляющих высказывания; особые символы для логических связок, например &, ∧ – «и», ~ «неверно, что», «или», и скобки, играющие роль знаков препинания.

Логика высказываний не занимается анализом внутренней структуры простых высказываний, считая их неразложимыми.

7

Для определения структуры высказываний вводится список индивидных переменных: х, у, z…, х1, у1, z1…., представляющих разные объекты, и перечень предикатных переменных: Р, Q, R,…, Р1, Q1, R1,…, представляющих свойства и отношения объектов. Наряду с этими переменными могут рассматриваться индивидные константы, имена собственные.

Запись (x) Р(х) означает «любой х обладает свойством Р», (∃х) Р(х) – «существует х, обладающий свойством Р», (∃x) Q(x, у) – «существует х, который находится в отношении Q с у» и т. д.

8

Под предикатом понимается языковое выражение, обозначающее некоторое свойство или отношение. Предикат, указывающий на свойство предмета, например «быть круглым», называется одноместным. Двухместным, трехместным называется предикат, обозначающий отношение, в зависимости от числа его членов. Например, «кусает» – двухместный предикат, «находится посередине» – трехместный.

Предикатами называются функции, значениями которых служат высказывания. Данные функции превращаются в высказывания после подстановки имен вместо переменных.

Функцией одной переменной, например, становится выражение «…есть золотой» и т. д. В логике предикатов существуют логические операторы ∀ («для всех», «для любого», «для каждого») и ∃(«для некоторых», «существует»), называемые кванторами общности и существования соответственно.

9

Логика предикатов – раздел современной логики, в котором описываются выводы, учитывающие внутреннюю (субъектно-предикатную) структуру высказываний. Логика предикатов представляет собой расширение логики высказываний, поскольку все законы логики высказываний служат также законами логики предикатов, однако не наоборот.

5. Понятие умозаключения. Дедуктивные умозаключения

Умозаключение – такая логическая операция, результатом которой становится новое утверждение – заключение (следствие), полученное из одного или нескольких утверждений (посылок).

1

Существует два вида умозаключений, соответствующих случаям, когда связь логического следования существует между посылками или такая связь отсутствует: дедуктивные и индуктивные. В дедуктивном (силлогистическом) умозаключении эта связь опирается на логический закон, в силу чего заключение вытекает из принятых посылок.

2

Отличие дедуктивного умозаключения в том, что оно от истинных посылок неизменно приводит к истинному заключению. К дедуктивным относятся, например, такие умозаключения: если данное число делится на шесть, следовательно, оно делится на три.

Характерными дедукциями служат логические переходы от общего знания к частному. Всегда, когда требуется рассмотреть некоторое явление на основании уже известного общего принципа и получить в отношении этого явления необходимое заключение, мы умозаключаем в форме дедукции (все поэты – писатели; Шекспир – поэт; следовательно, Шекспир – писатель).

3

Под дедукцией понимается выведение заключений, столь же истинных, как и принятые посылки. В обычных рассуждениях дедукция лишь в редких случаях предстает в развернутой форме. Чаще всего лишь некоторые посылки указываются явно, но не все используются в рассуждении. Общие утверждения, о которых предполагается, что они хорошо известны или очевидны, как правило, опускаются. Заключения, следующие из принятых посылок, также не всегда формулируются. Однако лишь иногда логическая связь между исходными и выводимыми утверждениями отмечается словами, такими как «следовательно» и «значит».

4

Как правило, дедукция настолько сокращается, что о ней остается только догадываться, и восстановить ее полностью, с указанием всех необходимых элементов и их связей, бывает нелегко.

Несколько обременительно проведение дедуктивного рассуждения без сокращений. Тем не менее для обнаружения возможных допущенных ошибок и при возникновении сомнений в обоснованности дедуктивного вывода необходимо вернуться к началу рассуждения и повторить его в наиболее подробной форме.

5

С помощью дедуктивного способа легко выявить внутренние связи элементов целого (например, внутри теории, формы мысли и пр.). По этой причине под дедукцией понимается опережающий способ познания, эффективный метод исследования, представления, изложения мысли.

6. Индуктивные умозаключения

1

Взаимодействие посылок и заключения в индуктивном умозаключении опирается не на законы логики, а на фактические или, возможно, психологические основания.

В отличие от описанного выше дедуктивного умозаключения в индуктивном рассуждении заключение логически не следует из посылок и, более того, может содержать информацию, отсутствующую в посылках. Поэтому истинность посылок не означает истинность выведенного из них индуктивно утверждения.

2

С помощью индукции получаются вероятные (правдоподобные) заключения, нуждающиеся в дальнейшей проверке. Примерами индукции могут служить рассуждения: Алексей – студент; Борис – студент; Виктор – студент; Алексей, Борис, Виктор – юноши. Следовательно, все юноши – студенты.

Индукция не гарантирует получения истины из уже имеющихся. Однако максимум, о котором можно говорить, – это определенная степень вероятности индуктивно получаемого утверждения. Скажем так: посылки приведенного индуктивного умозаключения истинны, но заключение, очевидно, ложно.

3

Рассуждения, ведущие от знания о части предметов к общему знанию обо всех предметах определенного класса, – это индукции, поскольку всегда остается вероятность того, что обобщение окажется необоснованным (Платон – философ; Аристотель – философ; значит, все люди – философы).

Однако нельзя отождествлять дедукцию с переходом от общего к частному, а индукцию – с переходом от частного к общему. Дедукция – это логический переход от одной истины к другой, индукция – переход от достоверного знания к вероятному. К индуктивным умозаключениям относятся не одни обобщения, но и аналогии, заключения о причинах явлений и др.

4

Если рассуждение правильно, заключение вытекает из посылок с логической необходимостью, и общая схема такого рассуждения представляет собой логический закон. В основе логически безупречного мышления лежат логические законы, и рассуждать логически правильно означает проводить рассуждения в соответствии с законами логики.

 
5

Известно, что множество логических законов бесконечно. Многие из них известны из практики рассуждения, и они часто применяются на интуитивном уровне. Понятие «правильное рассуждение (умозаключение)» относится только к дедуктивному умозаключению, которое может быть правильным или неправильным. В индуктивном умозаключении логическая связь между посылками и заключением не предполагается, и такое умозаключение не бывает ни правильным, ни неправильным. По этой причине индуктивные рассуждения иногда не относят к числу умозаключений.

7. История неклассической логики

1

Традиционно ориентиром классической логики служит анализ математических рассуждений, поэтому ее особенности связаны именно им. В процессе развития классическая логика оказалась одной из семейства логических теорий. Ядром современной логики традиционно остается классическая логика, сохраняющая как теоретическую, так и практическую значимость.

Разнообразные неклассические направления составляют разнородное целое, которое принято объединять под именем неклассической логики. Но для направлений неклассической логики классическая была первой изначальной теорией, последовательно и полно реализовавшей программу математизации логики.

2

Известная пословица говорит: «Нет пророка в своем отечестве». Те, кого мы сегодня называем классиками, некогда стояли наравне со своими современниками, и последние не скупились на критику.

Классическая логика стала объектом жесткой критики практически с момента своего зарождения. Интуиционист, голландский математик и логик Л. Брауэр известен как один из самых известных критиков классической логики начала XX в. Во многих случаях критики оказалось, что реализованные в ней идеи обсуждались еще в античной и средневековой логике, но были забыты в Новое время. В результате возник целый ряд новых разделов современной логики.

3

В 1908 г. Л. Брауэр подверг сомнению неограниченную приложимость в математических рассуждениях некоторых классических законов. Его рассуждения послужили основой для возникновения интуиционистской логики, основы которой сформулировал в 1930 г. А. Гейтинг.

Еще в 1912 г. американский логик и философ К. И. Льюис впервые разработал неклассическую теорию логического следования. Ее возникновение было обязано сомнительности, с точки зрения Льюиса, материальной импликации, что проявилось в так называемых парадоксах импликации.

4

В основе теории логического следования Льюиса лежало понятие строгой импликации, определявшееся в терминах логической невозможности. Существует семейство теорий, описывающих логическое следование и условные связи корректнее, чем классическая логика. Наибольшую известность получила релевантная логика, развитая американскими логиками А. Р. Андерсоном и Н. Д. Белнапом.

Ученые К. Льюис и Я. Лукасевич в 1920-х гг. построили первые модальные логики, рассматривавшие понятия необходимости, возможности, случайности и т. п. Таким образом, возродилась проблематика модальностей – предмет исследований еще Аристотеля и некоторых средневековых логиков.

5

В 1920-е гг. начали складываться также:

– многозначная логика, предполагающая, что утверждения являются не только истинными или ложными, но и могут иметь другие истинностные значения;

– деонтическая логика, изучающая логические связи нормативных понятий;

– логика абсолютных оценок, исследующая логическую структуру и логические связи оценочных высказываний; – вероятностная логика, использующая теорию вероятностей для анализа проблематичных рассуждений, и др.

6

Перечисленные разделы логики не были тесно связаны с математикой, в область логического исследования оказались вовлеченными естественные и гуманитарные науки.

В дальнейшем сложились и нашли приложение:

– логика времени, описывающая логические связи высказываний, у которых временной параметр включается в логическую форму;

– паранепротиворечивая логика, исключающая возможность получать из противоречия все что угодно;

– эпистемическая логика, изучающая понятия «опровержимо», «неразрешимо», «доказуемо» и др.

1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18 
Рейтинг@Mail.ru