Во время проведения зональной летней учебной практики студентов 2-го курса зоолого-ботанического отделения Биологического ф-та МГУ один день на каждой точке маршрута отводится для самостоятельных работ. Самостоятельные работы студентов осуществляются с целью углубления, расширения, систематизации и закрепления полученных теоретических знаний, развития познавательных способностей и активности, формирования умений использовать эти знания на практике для выполнения научных работ, а также формирования самостоятельного мышления, способностей к саморазвитию, самосовершенствованию и самореализации, развития исследовательских умений и навыков.
1. Во время выполнения самостоятельной работы преподаватель формулирует примерные темы работ, а студент выбирает импонирующую ему тему.
2. Студент должен следовать схеме подготовки к самостоятельной работе:
• выбор и ознакомление с темой работы
• изучение основной и дополнительной литературы по теме (если есть)
• формулирование цели и задач
• формулирование плана работы
• сбор материала
• проведение необходимых полевых исследований, соответствующих задачам и возможностям практики
• проведение необходимых камеральных исследований, если такая возможность есть
• обсуждение и изложение результатов и структурированных выводов
• подготовка доклада и презентации для защиты самостоятельной работы.
Одним из направлений возможных тем для самостоятельных работ на зональной летней учебной полевой практике студентов Биологического ф-та МГУ может быть изучение таксономического состава некоторых родов высших растений данной территории, а точнее, выявление и наименование гибридов симпатрически произрастающих близких видов одного рода. Такие виды при совместном произрастании очень часто образуют гибридную популяцию. Кроме того, естественные гибридные зоны и гибридные популяции являются ценным инструментом для понимания происхождения и поддержания репродуктивной изоляции (РИ) и, следовательно, видов. Самые эффективные способы выявления и исследования гибридов – это сравнения геномных исследований выборки гибридной популяции с использованием полного или частичного секвенирования генома с геномными исследованиями родительских исходных популяций, вовлеченных в гибридизацию. Но для идентификации и выявления гибридов и их родителей также необходимо изучение морфологической изменчивости на большом материале в естественной среде обитания, что может быть успешно осуществлено в рамках полевой практики студентов.
Гомоплоидные гибриды образуются в результате скрещивания родителей с одинаковым числом хромосом и могут быть плодовиты и сохранять способность к возвратному скрещиванию с родительскими видами. Примером может быть пион – эндемик Грузии Paeonia × chamaeleon – вид гибридного происхождения, родителями которого являются P. caucasica и P. mlokosewitschii. Этот тип гибридизации называют “интрогрессивная гибридизация”, в результате которой происходит включение некоторой части генома одного родительского вида в геном другого родительского вида при кроссинговере. Такие гибриды еще называются рекомбинантные. У них могут проявляться черты как одного так и другого родителя при условии кодоминирования признаков. Если числа и морфология хромосом родителей сильно различаются, то гибриды F1 могут быть частично или полностью стерильны, но могут продуцировать нередуцированные гаметы, что позволяет им участвовать в возвратных скрещиваниях. При изоляции такие гибриды могут занять определенную территорию и создать воспроизводящуюся популяцию. Этот способ видообразования называется рекомбинационным (Родионов, 2013; Родионов и др., 2019).
1. Древесные растения.
Например, известно, что Populus alba и P. tremula образуют гибриды, широко известные как P. x canescens. В местах совместного произрастания они образуют большие «мозаичные» гибридные зоны. Такая гибридная зона была исследована в долине Дуная недалеко от Вены (Австрия). Зона отбора проб охватывала линейное расстояние примерно 110 км долины реки между Кремсом и Хайнбургом, включая пойму и «галерейный» лес, расположенный в пойме Дуная, Национальный парк (http://www.donauauen.at/) и прилегающие области. Гибридные морфотипы P. x canescens отбирались таким образом, чтобы максимизировать географическое покрытие в гибридной зоне. Для сбора материала родительских видов выбирают две соседние «популяции». Эти образцы были проанализированы ранее (Lexer et al., 2005) и было выяснено, что такие «популяции» правильно называть «субпопуляции», поскольку молекулярный анализ показал, что уровни обмена генами между видами высоки (Lexer et al., 2005) и что они образуют одну панмиктическую единицу для каждого вида. Для выделения ДНК молодые листья собираются и кладутся в селикагель. Для первой субпопуляции P. alba из долины Дуная в Австрии в зоне симпатрии отмечалась – только средняя точка отбора проб (центр области сбора образцов) (48,261 Н, 16.271 E); для второй субпопуляции из Румынии, расположенной вне зоны симпатрии, также отмечалась только средняя точка отбора проб: (43,771 Н, 23,961 E). Образцы P. tremula были собраны на Дунае (Австрия) в пределах зоны симпатрии: (средняя точка отбора проб – 48,281 Н, 15,891 E) и из Восточных Альп в Австрии вне зоны симпатрии (средняя точка отбора проб – 46,621 Н, 13.851 E). Размер выборки составил: 378 образцов для гибрида P. x canescens, 88 образцов для P. alba и 78 образцов P. tremula.
В Испании в гибридной зоне произрастания P. alba и P. tremula был собран материал с 432 и 505 соответственно с одиночно стоящих деревьев для изучения однонуклеотидных полиморфизмов (SNP) из ДНК участка, ассоциированного с сайтом рестрикции (RAD). Проводили оценку геномной дивергенции, сравнения кариотипов и дифференциации по всем 19 хромосомам. Обнаружено преобладание гибридов F1 в центре геномных клин с одной стороны, и геномно и пространственно локализованные, изменчивые варианты, свидетельствующие о древней интрогрессии между родительскими видами. Была показана роль отбора против рекомбинантных генотипов в поддержании РИ (кажущаяся фертильности F1), что согласуется с моделью внутригеномной «коадаптации» барьеров к интрогрессии при вторичном контакте. Иногда зоны интрогрессивной гибридизации охватывают огромные пространства. Так, в Восточной Европе и Западной Сибири после отступления ледника сомкнулись и частично перекрылись ранее разделенные ледником ареалы ели европейской (Picea abies) и ели сибирской (P. obovata). Естественные гибриды между этими двумя видами морфологически и по молекулярным ядерным маркерам (аллозимы, микросателлиты) уклоняются то в сторону одного, то в сторону другого родителя и распространены в полосе, протянувшейся с северо-запада на юго-восток от Мурманской области до Пермской области и Башкирии. Гибриды часто называют ель финская (P. х fennica) и даже считают его молодым гибридогенным видом. Вероятно, что распространение гибридов P. abies × P. obovata, еще шире, до левого берега Оби включительно, на что указывают обнаруженные у фенотипически сибирской ели характерные для североевропейских популяций P. abies гаплотипы митохондриальной ДНК (Мудрик и др., 2016).
Сбор материала покрытосеменных древесных растений для изучения признаков вегетативной сферы гибридов и их родителей в зоне гибридизации, например, тополей, осуществляется в конце мая – июне, т.к. позже листья теряют опушение и поражаются грибами. Необходимо собрать в гербарий материал в виде удлиненного побега-ауксибласта с несколькими, расположенными на нем брахибластами.
В день сбора материала данные о площади популяции и координаты границ популяции заносятся в специальное приложение с геолокациями (например, Google Earth, где можно узнать площадь участка и отметить координаты отдельных образцов).
Для дальнейшей статистической обработки необходимо собрать фрагменты побегов не менее 10 каждого родительского вида и 30 гибридных особей.