На четвертом курсе университета я наткнулся на статью английского физика Криса Ишема о квантовой гравитации. В статье говорилось, что остается нерешенной фундаментальная, лежащая в основании современной физики проблема, связанная с определениями времени и пространства, то есть базовых структур мира. Я с жадностью читал эту статью. Многого я не понял, но меня заворожил вопрос, освещенный в ней. Вот какова эта проблема в главных чертах.
В великой научной революции XX века различается два крупных эпизода: с одной стороны, квантовая механика, с другой – общая теория относительности[1]. Прекрасно описывающая микроскопический мир квантовая механика перевернула наше представление о материи. Теория относительности, точно объясняющая действие притяжения, радикально изменила наши познания о времени и пространстве. Эти две теории получили широкое подтверждение на практике и сделали возможным развитие современных технологий.
Но эти теории вели к двум разным картинам мира, на первый взгляд, несовместимым. Каждая из них излагается так, как если бы другой не существовало. То, что преподаватель рассказывает студентам об общей относительности, – просто чепуха для его коллеги, преподающего квантовую механику тем же студентам в соседней аудитории, и наоборот. Квантовая механика пользуется старинными понятиями о пространстве и времени, противоречащими теории относительности. А теория относительности применяет старинные понятия материи и энергии, противоречащие квантовой механике.
В настоящее время в физике нет общего пространства, где обе теории применялись бы одновременно. В зависимости от масштаба рассматриваемых явлений применяют то одну, то другую. В тех физических вопросах, к исследованию которых можно приложить обе, будь это сверхмалые масштабы, центр черной дыры или первые этапы существования Вселенной, наука соприкасается с уровнями энергии, труднодостижимыми для нашего оборудования.
Мы не знаем, в каких формулировках говорить об этих двух великих открытиях, и у нас нет общих рамок, в которых мы могли бы размышлять о мире. Мы находимся в положении шизофреников, с нашими отрывочными и несовместимыми между собой объяснениями. Дело доходит до того, что мы больше не знаем, что такое пространство, время и материя. Сегодня фундаментальная физика находится в плачевном положении.
Такие ситуации уже возникали в истории науки, например до объединяющей работы Ньютона. У Кеплера, наблюдавшего звезды и планеты, они двигались по эллипсам. У Галилея, изучавшего падение тел на поверхность земли, объекты следовали по параболическим траекториям. Но Коперник понимал, что Земля – такое же место во Вселенной, как и всякое другое. Следовательно, возможна была теория, которая оказалась бы в одинаковой степени подходящей и для земли, и для неба. Ньютон сумел примирить два воззрения в одной теории: одно и то же уравнение теперь было приложимо и к движению планет, и к движению падающих яблок.
На протяжении трех столетий господствовало это прекрасное единство. До начала XX века физика представляла собой собрание взаимосвязанных законов, основанных на малом числе ключевых понятий, таких как время, пространство, причинность и материя. И, несмотря на значительную эволюцию, эти понятия остались во многом неизменными.
К концу XIX века трудности, возникавшие в этом едином собрании то здесь, то там, превысили критическую массу, и в первой четверти XX века вековые основания физики были обращены в прах квантовой механикой и общей теорией относительности. Мир утратил прекрасное единство ньютоновской Вселенной.
Две новые теории добились огромного успеха и постоянно подтверждались экспериментами. Сейчас они стали законными частями установившегося знания. Каждая из них меняет базу классической физики со своей стороны, но у нас нет концептуально связанной картины, которая включала бы обе теории. Вследствие этого мы не можем предсказывать события там, где тяготение начинает проявлять признаки квантовых эффектов, там, где расстояние меньше 10–33 сантиметров. Это крайне малые масштабы, но следовало бы уметь описывать то, что происходит в них. Вселенная не может подчиняться законам, соответствующим двум разным и несовместимым теориям. В природе действительно происходят процессы на столь микроскопическом масштабе – вблизи момента Большого взрыва или рядом с черной дырой, например. И если мы хотим понять такие явления, то должны уметь вычислять, что происходит на уровне ничтожно малых масштабов. Значит, нужно тем или иным способом примирить две теории. Эта задача и представляет собой центральную проблему квантовой гравитации.
Как видно, проблема сложная. Но, со всей неустрашимостью своих двадцати лет, я решил на последнем курсе университета посвятить жизнь ее исследованию. Меня соблазняла мысль об изучении таких фундаментальных категорий, как время и пространство, и даже само то, что проблема представлялась неразрешимой.
В Италии тогда никто над ней не работал. Мои профессора убеждали меня не устремляться в этом направлении: «Эта дорога никуда не приведет», «Ты никогда не найдешь работу», «Лучше тебе присоединиться к сильному коллективу, твердо стоящему на ногах». Но такие советы от благоразумных зрелых людей часто только усиливают веселую решимость молодого человека. Ребенком я читал сказки итальянского писателя Джанни Родари. В одной из них рассказывается про Джованнино и дорогу, которая никуда не ведет. Этот персонаж жил в деревне, где есть такая дорога. Из любопытства и упрямства он захотел пойти по ней – вопреки всему, что слышал от других. Отправившись в путь, он, конечно же, обнаружил замок с принцессой, которая осыпала его драгоценными камнями. Когда он вернулся в таком виде в деревню, все тоже бросились бежать по той дороге, но никто не нашел никакого сокровища. Эта история запала мне в душу. В случае с квантовой гравитацией я тоже нашел дорогу, которая, по общему убеждению, никуда не вела. Пойдя по ней, я отыскал свою принцессу и немало драгоценных камней.
Поговорим подробней о происхождении и о сути проблемы квантовой гравитации. И начнем с ключевого понятия – понятия пространства, которое первым среди прочих было поколеблено в истории науки. Потом я покажу, что понятие времени должно подвергнуться еще более впечатляющей трансформации.
Представление о пространстве, лежащее в основе наиболее знакомой нам картины мира, – это представление об огромном «ящике», в котором мир и находится. В этом ящике все единообразно, все совершается по одним и тем же законам, без каких-либо привилегированных направлений движения. Здесь применима геометрия Евклида, здесь развертываются мировые процессы. Все известные нам объекты состоят из частиц, находящихся в этом пространстве-ящике. Теория всемирного тяготения Ньютона была создана для такого пространства. А ньютоновская теория тяготения еще и сейчас остается базовой для бесчисленных технологических и инженерных применений физики во всех сферах.
Через двести лет после Ньютона, в конце XIX века, Джеймс Клерк Максвелл и Майкл Фарадей занимались изучением электрической энергии в пространстве между двумя заряженными телами. Их исследование привело к тому, что они изменили известное описание пространства. Рядом с ньютоновским пространством и частицами появился третий компонент – электромагнитное «поле», новый «объект», и он имел огромную значимость для всех будущих физических исследований.
Электромагнитное поле – это то, что лежит в основе электрической и магнитной сил. Поле – рассеянная целостность, которая заполняет все пространство. Фарадей представлял его как единство множества линий[2], исходящих из положительных электрических зарядов в направлении к отрицательным. На рисунке 1 показаны такие линии. В действительности их число бесконечно и ими без разрывов можно заполнить все пространство, они как нити нематериальной паутины, пронизывающей три пространственных измерения.
Через любую точку проходит одна из линий Фарадея. Направление этой линии в данной точке указано вектором (маленькой стрелкой), касательным к линии. Поле проявляется как электрическая сила, действующая на находящийся в этой точке электрический заряд в направлении, обозначенном вектором.
Рисунок 1. Электрическое поле между двумя зарядами: поле изображено «линиями Фарадея». Направление электрической силы в отдельно взятой точке указано стрелкой.
Великое открытие Фарадея и Максвелла заключалось в том, что поле – это автономное образование, независимое от самих электрических зарядов. Если таких зарядов нет, «линии Фарадея» все равно существуют. Если нет зарядов, к которым линии могли бы вести, то они замыкаются на себе и образуют петли. Одна из таких фарадеевых линий изображена на рисунке 2. Направление электрической силы в каждой точке пространства показано вектором, касательным к линии в данном месте.
Электромагнитное поле не создается зарядами. Оно – автономное образование, которое всегда существует и изменяется время от времени из-за присутствия электрических зарядов, но не является их результатом. Для того чтобы существовать, заряды полю не нужны.
На язык математических формул наблюдения и догадки Фарадея перевел Максвелл. Электромагнитное поле с его линиями, каким его представлял себе Фарадей, описано уравнениями Максвелла. У Фарадея, гениального экспериментатора, великого провидца, не было для этого математической подготовки.
Форма линии Фарадея нестабильная и неслучайная, она подчиняется закономерностям, описанным в уравнениях Максвелла. Линия меняет форму под воздействием соседних линий или электрических зарядов. Когда такие заряды присутствуют, они «открывают» петли и придают электромагнитному полю тот вид, который представлен на рисунке 1. Электромагнитное поле описывается и ведет себя как как совокупность фарадеевских линий. Эти линии пребывают в постоянном движении, как волны в море, и их движение распространяется от одной к другой.
Рисунок 2. Замкнутая линия Фарадея, то есть петля. Стрелками указано направление электрической силы, которая в каждой точке перпендикулярна линии Фарадея. Эти линии заполняют все пространство и служат визуализацией электромагнитного поля.
Когда в поле согласованным образом, от одной точки к другой, распространяются изменения, то говорят, что между этими точками помещена электромагнитная волна. Тогда длина и направление вектора, представляющего электрическую силу, колеблются с некоторой периодичностью. Скорость и величина колебаний определяют свойства волны: ее длину и интенсивность. Герц первым использовал радиоволны для того, чтобы передавать информацию на расстоянии, открыв путь сотням других применений новой теории, которые постепенно обогатили технологию и изменили облик мира.
Максвелл был гениален в том, что понял: свет – не что иное, как быстрое волновое движение линий одной из разновидностей электромагнитного поля. В случае с радиоволнами колебание волны медленное, а в случае света – быстрое, но речь там и там идет об одном и том же – о периодическом изменении электромагнитного поля.
Иногда говорят, что электромагнитное поле невидимо. Это не так: то, что мы «видим», и есть электромагнитное поле. Когда мы смотрим на что-то, наши глаза чувствительны не к самому объекту наблюдения, а к колебаниям электромагнитного поля между ним и нами, к свету, отраженному объектом. Представьте себе отражение в зеркале, проекцию фильма на экран в кинотеатре или голограмму. Во всех этих случаях в конкретном месте нет объекта, который, как нам кажется, мы видим, – есть только свет, направленный так, как если бы объект там был. И во всех этих случаях мы имеем один и тот же результат.
Труды Фарадея и Максвелла внесли лишь некоторые изменения в ньютоновскую картину мира, но не подвергли ее фундаментальной трансформации. По-прежнему кажется, что пространство существует как ящик, в котором что-то движется. Просто к ящику и частицам в нем теперь добавился третий компонент – электромагнитное поле.
Революция в понимании пространства произошла в 1915 году благодаря Эйнштейну. Он был заворожен работами Максвелла и, со своей стороны, дал новое объяснение силе притяжения, или гравитации (той силе, которая притягивает нас к Земле и удерживает Землю рядом с Солнцем, а Луну рядом с Землей). Эйнштейн понял, что следует говорить о гравитационном поле, подобном электромагнитному.
Точно так же, как энергия от одного заряда к другому переносится электромагнитным полем через пространство между ними, гравитация между двумя объектами, обладающими массой, переносится гравитационным полем. Значит, должны существовать и гравитационные «линии Фарадея», при помощи которых можно представить взаимные связи масс и поле, занимающем все пространство. Это поле может двигаться, вибрировать, в нем могут возникать волны. Эйнштейн ввел понятие гравитационного поля и предложил уравнения, которые сегодня называются уравнениями Эйнштейна, аналогичные уравнениям Максвелла.
Если б на этом дело закончилось, Эйнштейн остался бы великим ученым, но не гением. Однако его понимание физического мира было более глубоким. Стараясь объяснить свои уравнения, описывающие гравитационное поле, он сделал огромный шаг вперед: понял, что гравитационное поле и пространство-«ящик» Ньютона в действительности представляют собой одно и то же. Это, вероятно, его самое высшее достижение.
Давайте представим: мы узнаем, что господин А и господин Б – на самом деле один и тот же человек. Есть два способа это понять: можно сказать, что нет никакого господина Б, потому что речь идет все о том же господине А, или что нет никакого господина А, потому что на самом деле это господин Б. Точно так же открытие Эйнштейна можно передавать двумя способами. Первый: нет гравитационного поля, а есть пространство, которое движется, вибрирует и меняет форму, подобно волнам моря. Второй: нет пространства, а есть только движущееся гравитационное поле. Первое высказывание часто используется для того, чтобы описать положение вещей. Это научная вульгаризация, говорящая об «эластичном» пространстве, которое искривляется вблизи тела большой массы. Но такое объяснение проблематично, оно ведет к мысли о пространстве как о какой-то особой сущности, отличающейся от гравитационного поля. Идея пространства слишком связана с представлением об огромной и аморфной целостности, пассивной и независимой от того, что она в себя вмещает. Пространство теории относительности, напротив, по своей сути близко к электромагнитному полю. Это динамическая сущность, взаимодействующая с объектами, которые в нем находятся. Поэтому наилучший способ излагать открытие Эйнштейна – это утверждать, что пространства не существует, а речь на самом деле идет о гравитационном поле. Ньютон принимал гравитационное поле за особую сущность, абсолютное пространство, вместе того чтобы рассматривать его как одно из многих полей.
Такое открытие было неожиданным и ошеломляющим. Итак, пространства, которое Ньютон описал как раз и навсегда установленное, неподвижное, как ящик, – не существует. Вместо него мы имеем дело с гравитационным полем, гибким и динамичным физическим объектом того же рода, что и электромагнитное поле. Разом оказалось так, что Вселенная не состоит из частиц и полей, пребывающих в пространстве, – она состоит только из частиц и полей. Поля существуют, так сказать, одно в другом. Гравитационное поле и электромагнитное переходят одно в другое, или накладываются одно на другое, или перекрывают друг друга – короче говоря, сосуществуют и действуют вместе. Мы живем в электромагнитном и/или в гравитационном поле, а не в неподвижном пространстве-ящике.