bannerbannerbanner
Это всё квантовая физика! Непочтительное руководство по фундаментальной природе всего

Жереми Харрис
Это всё квантовая физика! Непочтительное руководство по фундаментальной природе всего

Квантовая революция вынудила нас взглянуть на мир по-новому. Все от анимизма до бездушного детерминизма снова приобрело актуальность – наряду с совершенно новыми перспективами, о которых мы раньше и не задумывались. Параллельные вселенные, вселенское сознание, дуализм разума и тела – все это вернулось в меню.

Моя книга – об этом самом меню и о том, что оно значит для нас: для меня, для вас и остального человечества. Но еще она об исследователях, шарлатанах и академической индустрии, которая формирует это меню и определяет, что мы с вами думаем о себе и о своем месте во вселенной.

Мне бы хотелось избежать излишнего пафоса, но ставки очень высоки, так что давайте постараемся разложить все по полочкам. Эти идеи – из тех, что формируют самоощущение, а в конечном итоге определяют, какое общество мы решаем выстроить.

Ну и на тусовках сможете произвести впечатление.

Глава 1
Вниз по кроличьей норе

Как физики поняли, что квантовый мир – такое странное место?

В ответе всего одно слово: эксперименты. Физики провели кучу экспериментов и получили настолько дикие и абсолютно непонятные результаты, что осмыслить их можно было только одним способом – допустить, что сама природа играет на квантовом уровне по очень странным правилам. И когда ученые это наконец сделали, они открыли ящик Пандоры, и это перевернуло наши представления о реальности как таковой. А чтобы выяснить, что же было в этом ящике Пандоры, нужно основательно разобраться в экспериментах, которые нас к нему подвели.

Итак, поговорим об экспериментах. Не стану скрывать: экспериментальная физика скучна до одури. Да, она предполагает изучение фундаментальных вопросов о природе вселенной. Но на самом-то деле почти всегда заранее знаешь, какие ответы получишь.

А значит, если результат эксперимента тебя удивил, одно из двух:

1. Тысячи ученых, столетиями трудившиеся не покладая рук, неверно понимали, как устроена природа, а ты – аспирант на минимальном окладе – случайно умудрился подковырнуть вселенную именно таким образом, чтобы доказать их неправоту.

2. Ты запорол эксперимент.

Мозг среднестатистического аспиранта работает на дошираке, дешевом пиве и четырехчасовом сне, поэтому обычно второй вариант предпочтительнее первого. В сущности, примерно единственный расклад, при котором может случиться первый вариант, – это если у тебя накоплено столько соответствующих научных знаний, что ты способен поставить под сомнение коллективные представления всех своих коллег-ученых.

В наши дни это стало бы громким заявлением. Однако в начале XIX века такое было в принципе возможно, и по крайней мере одному человеку сие удалось. Звали его Томас Юнг, и он был не только врачом, лингвистом, музыкантом-теоретиком и египтологом, расшифровывавшим Розеттский камень, но и одним из величайших научных умов своего времени. Знания Юнга были настолько широки и глубоки, что его биография, опубликованная в 2006 году, носит название «Последний человек, который знал все», а в его профиле на LinkedIn можно было бы запутаться напрочь.

В 1801 году Томас Юнг провел эксперимент, который впервые продемонстрировал одну из главных загадок квантовой механики, хотя сам Юнг тогда об этом не подозревал. Его простой эксперимент имел колоссальные последствия для понимания мироустройства и противоречил здравому смыслу. И хотя Юнг провел его более двухсот лет назад, он заложил экспериментальную основу для теорий, которые впоследствии послужили физикам для предсказания существования параллельных вселенных, дуализма разума и тела и много чего еще более спорного и до одури увлекательного.

Вот что сделал Юнг.

Как проделать дырочки в классической физике

Для начала Юнг взял непрозрачный экран и проделал в нем две щелочки:


Затем он направил на экран пучок света. Пучок был достаточно широким, чтобы пройти сквозь обе щели:



После этого Юнг закрыл левую щель, так что свет проходил только через правую.

И наконец, он поставил за непрозрачным экраном-ширмой второй экран, проекционный, чтобы посмотреть, как выглядит свет после прохождения через щель (рис. вверху).

Результат отнюдь не поражал: Юнг увидел на проекционном экране одно яркое пятно именно там, куда и должен был попасть свет после прохождения через правую щель. И тот же результат Юнг получил, когда перекрыл, наоборот, правую щель: опять яркое пятно именно там, где его следовало ожидать, раз он прошел через левую щель (рис. внизу).



Пока что вывод получался незатейливый: свет может проходить только сквозь отверстия в непрозрачном материале. Так себе интригующая завязка.

Зато дальше начались… странности. На последнем этапе Юнг открыл обе щели, так чтобы свет попадал на проекционный экран и через щель 1, и через щель 2. Как вы думаете, что он увидел?

Дайте угадаю. Скорее всего, вы думаете: «Какая чушь. Я получаю яркое пятно справа на проекционном экране, если открыта правая щель, и яркое пятно слева на проекционном экране, если открыта левая щель. Значит, если открыты обе, ясно, что я увижу два ярких пятна, одно справа и одно слева».



Как бы не так! Получается совсем другое – по крайней мере, если щели у вас достаточно малы и расположены достаточно близко друг к другу, а пучок света подается аккуратно. Вместо одного яркого пятна от правой щели и другого яркого пятна от левой Юнг увидел очень странный и сложный узор. Раньше он с таким не сталкивался.



Если вы похожи на обычного физика XVIII века, то, скорее всего, смотрите на последнюю картинку и спрашиваете себя: «Это еще что за чертовщина? Бессмыслица какая-то. Вот я открываю одну щель и получаю пятно на соответствующей стороне проекционного экрана – и это нормально. Но потом я открываю обе щели и вдруг получаю странную череду полос, расположенных через равные промежутки. Что происходит?!»

Изначально этот опыт получил название «эксперимент на двух щелях» и прославился именно потому, что вызвал у всех такую же реакцию, как только что у вас, – он дает странные результаты. Однако, как ни поразительно, Томас Юнг придумал им объяснение.

Когда открыты обе щели, мы ожидаем увидеть просто два пятна света. Но на деле видим гораздо более сложный узор. Юнг заключил, что такое возможно, только если свет из щели 1 смешивается со светом из щели 2 таким интересным образом, что на экране создается неожиданный узор.

Приведу аналогию. Помните классический школьный опыт, когда смешивают соду и уксус, чтобы получилась пена? Если бы вы не знали заранее, что сода с уксусом вступают в реакцию, вы бы ожидали, что смесь соды с уксусом будет выглядеть как скучная горка мокрого порошка. Буквально как сумма частей.

Но выходит иначе: смесь шипит и пузырится – и тоже получается непонятная фигня, совсем как на экране у Томаса Юнга. А раз вы видите отнюдь не горку мокрого порошка, значит, между двумя ингредиентами произошло какое-то взаимодействие. Точно так же непонятная фигня на проекционном экране Юнга подсказала ему, что произошло какое-то взаимодействие между светом из щели 1 и светом из щели 2.

Каким-то образом свет смешивался и порождал результат, который был больше суммы его частей – или по крайней мере отличался от этой суммы.

Физики не любят простые слова вроде «смешиваться», они предпочитают говорить, что свет из щели 1 «интерферирует» со светом из щели 2. Так что строго научный термин, обозначающий непонятную фигню на экране Юнга, – «интерференционная картина».

Поэтому утверждение «Я прорезал две дырки в экране, и напротив него получился вот такой глючный узор из непонятной фигни!» переводится на язык физики как «Профессор, я повторил эксперимент Юнга на двух щелях и смог получить на проекционном экране интерференционную картину. Можно мне диплом? Сил нет выплачивать долги за учебу».

Но Юнг на этом не остановился. Сообразив, что непонятная фигня на проекционном экране вызвана интерференцией между двумя щелями, он сумел еще и предсказать, какие узоры получатся от разных источников света и от разных щелей.

Точные результаты потребуют математики, в которую нам некогда углубляться, но пока скажем, что ведущие умы сочли опыт Юнга чертовски впечатляющим. И лет сто это был самый лучший ответ на вопрос «Откуда взялась эта непонятная фигня на моем проекционном экране?».

Но потом пришел Эйнштейн и все испортил.

Эйнштейн гордо объявил миру, что сделал крайне неприятное открытие: «Эй, ребята, помните, как Макс Планк доказал, что энергия состоит из отдельных порций и на самом деле не непрерывна? Жереми пишет про это в конце „Введения“. Так вот, я только что доказал, что свет тоже состоит из отдельных порций. И назвал их „фотоны“. Вот, собственно, и все, а теперь переписывайте свои учебники на здоровье, болваны».

На первый взгляд неочевидно, почему это подрывает объяснение, которое Юнг дает своему опыту с двумя щелями. Вероятно, вы думаете: «А что такого? Может, фотоны из щели 1 и фотоны из щели 2 смешиваются или отскакивают друг от дружки каким-то особым способом, вот и получается такой узор».

Но будь это так, узор исчезал бы, если бы мы пропускали сквозь щели по одному фотону за раз. Если фотоны не проходят сквозь обе щели одновременно, они не могут ни смешиваться, ни отскакивать друг от дружки, так что мы должны вернуться к простой картинке из двух пятен, которую исходно и ожидали увидеть. Верно ведь?

Именно это и пытались сделать экспериментаторы – они пользовались очень тусклым источником света и пропускали сквозь щели буквально по фотону за раз.

 


И по мере того, как все больше и больше фотонов по одному попадали на экран… Угадайте, какой узор они начали формировать вместе?



Да ту же самую треклятую интерференционную картину!



Как такое возможно? С одной стороны, складывается впечатление, что свет из щели 1 как-то влияет на свет из щели 2 – иначе как объяснить интерференционную картину?

Но с другой стороны, складывается впечатление, что интерференция происходит, даже если через щели проходит ровно по одной частице света за раз. Каким образом однаединственная частица может повлиять на возникновение интерференционной картины? Она что, сама с собой интерферирует? Разве такое возможно?

А если она интерферирует сама с собой, сквозь какую из щелей она прошла? Сквозь правую? Сквозь левую? Сквозь обе?

О нет, она прошла сквозь обе, так ведь?

Да. Да, так и было. Этот проклятый мелкий фотон-одиночка буквально прошел сквозь обе щели одновременно.

Ну вот, получите-распишитесь. Тот факт, что свет состоит из частиц, в сочетании с результатами двухщелевого эксперимента Юнга вынудил физиков признать вероятность крайне неприятного развития событий: квантовые частицы вроде фотонов могут находиться в двух местах одновременно.

И это не единичный случай. Со времен Эйнштейна и Планка много других экспериментов показали, что субатомные частицы (строительные блоки для атомов) ведут себя так, словно находятся в двух местах сразу или движутся с разной скоростью либо в разные стороны одновременно.

В сущности, эксперименты показывают не только что частицы могут быть в нескольких местах одновременно или делать много всего сразу. Они показывают еще и то, что частицы предпочитают такое существование. Будучи предоставлены сами себе, частицы, которые изначально находятся в одном месте, начинают размазываться в пространстве – занимают все больше и больше соседних локаций и в конечном итоге распространяются по обширным областям, пока их не остановит, например, стена.

И хотя диссоциативное расстройство личности у субатомных частиц не входит в справочные руководства для психиатров, о нем говорится во всех учебниках по квантовой механике, какие только вам ни доведется читать.

Кроме того, это хвостик ниточки, за который можно тянуть до тех пор, пока не распутаешь саму ткань реальности. Это основа всего магического и крышесносного, что только есть в квантовой механике, и именно на это ссылаются те, кто при помощи квантовой механики пытается доказать существование души, параллельных вселенных, глубинных слоев реальности и многого другого.

Именно об этом мы и поговорим. Но прежде мне придется рассказать вам кое-что неприличное.

Грязный секретик квантовой механики

Физики обожают картинки. Честно говоря, в восьмидесяти процентах трудов по квантовой механике есть серии рисунков, которые показывают, как что-то нас интересующее меняется со временем.

А еще физики очень ранимы и не хотят в этом признаваться. Поэтому заключают свои картинки в особые скобки (они называются кет-скобками), вот такие: – чтобы убедить себя, будто вообще-то делают нечто более сложное.

Кет-скобки означают всего-навсего, что вы говорите о «квантовом состоянии» того, что в них заключено. А «квантовое состояние» – это просто вычурный способ сказать «состояние», что, в свою очередь, просто вычурный способ сказать «как обстоят дела у этой штуки».

Например:



Выходит, главное различие между просто дурачком, рисующим человечков, и специалистом по квантовой теории заключается в использовании кет-скобок на рисунке справа. Они означают всего лишь, что мы говорим об изображенном внутри них объекте в контексте квантовой механики.

Чтобы не выделяться в толпе физиков, дальше мы будем иногда ставить эти модные скобки. Просто помните, что на самом деле мы всего лишь рисуем всякую всячину.

А теперь посмотрим, как эти простенькие картинки помогут нам подергать за ниточки в ткани мироздания.

Знакомьтесь: электрон

Мы уже говорили о фотонах – частицах света, из-за которых эксперимент Юнга на двух щелях дает такие необъяснимые результаты.

Они прекрасны и все такое, но, чтобы понять, почему ваши копии вполне могут бегать в бесчисленных параллельных вселенных или почему некоторые физики считают, будто из квантовой механики следует, что у нас есть бесплотные души, нам нужно познакомиться со вторым типом квантово-механических частиц – с электроном.

Электроны – крошечные субатомные частицы. Для наших целей достаточно представить себе, что электрон – это очень-очень маленький шарик.

Шарики могут вертеться по часовой стрелке и против часовой стрелки. Электроны тоже.

Нарисуем наш вращающийся электрон и возьмем его в кет-скобки:



ЕДИНСТВЕННАЯ странность квантовой механики

В квантовой механике на самом деле есть только одна странность, и вы о ней уже знаете: квантово-механические частицы способны делать много всего вроде бы взаимоисключающего одновременно.

Например, эксперимент Юнга на двух щелях показал, что фотоны могут находиться в двух местах одновременно. И огромное количество крышесносных экспериментов, аналогичных юнговскому, показывают, что такие же сверхспособности есть у электронов. Они тоже могут находиться во многих местах сразу и умеют одновременно вращаться и по часовой стрелке, и против.

Чтобы представить себе, как это работает, удобно прибегнуть к цветовым аналогиям: если по часовой стрелке – это «белый», а против часовой стрелки – «черный», то я имею в виду, что электроны могут быть и «серыми».

Эта идея кажется какой-то неправдоподобной, а то и вовсе невероятной. Мы же никогда не видели, чтобы объект вращался сразу в обоих направлениях. Однако и математика, и эксперименты однозначно показывают, что именно это и происходит.

А как описать эту ситуацию при помощи кет-скобок? Покажем, что наш электрон делает и то и другое одновременно, поставив между двумя кет-скобками знак плюс:



Согласно квантовой механике, такие «серые» частицы, вращающиеся в обоих направлениях сразу, вездесущи.

«Но постойте! – скажете вы. – Если мир полон странных объектов, которые вращаются по часовой стрелке и против нее одновременно, почему я никогда в жизни ничего подобного не видел?»

Этот отличный вопрос и лежит в основе так называемой проблемы измерения в квантовой механике. Очень может быть, что это наиглавнейший вопрос в современной физике.

Ответ на него выведет нас прямиком на множественные миры и квантовое сознание.

Как рассказывать истории при помощи кет-скобок

Прежде чем открывать квантово-механический ящик Пандоры, нам нужно обсудить еще кое-что: надо уделить минутку тому, как при помощи кет-скобок рассказывать истории.

Предположим, у вас есть электрон в закрытой коробке. И пусть рядом с электроном в этой коробке находится особый датчик, который щелкнет, если электрон вертится по часовой стрелке, и не издаст звука, если электрон вертится против часовой стрелки.

Если этот датчик вращения щелкнет, он пошлет сигнал пистолету (который тоже находится в коробке), пистолет выстрелит и убьет кота (который тоже сидит в коробке).

Зарисуем этот сценарий при помощи кет-скобок. Если наш электрон вращается по часовой стрелке, вот как все будет выглядеть, пока датчик еще не включен:



Теперь мы включаем датчик. Поскольку электрон вращается по часовой стрелке, датчик срабатывает. Отметим это галочкой (3):

Датчик посылает сигнал пистолету, тот через долю секунды стреляет, и в этот момент наша коробка выглядит вот так:



Пуля свистит в воздухе и миг спустя настигает кота, который, увы, становится жертвой нашего эксперимента:



По сравнению с этим случай, когда электрон вращается в другом направлении, очень прост. Поскольку электрон вращается против часовой стрелки, он не запустит датчик – и ничего не произойдет:



Оба этих сюжета – тот, где кот остается в живых, и тот, где он погибает, – пока что выглядят совершенно логично.

Но что будет, если наш электрон вертится не в том или ином направлении, а сразу в обоих?

Ответ звучит так: зомбокот.

Квантовые зомбокоты

Расскажем следующую историю. На сей раз электрон находится в состоянии, когда он вращается сразу и по часовой стрелке, и против.

Вот как это будет выглядеть, если нарисовать все с помощью кет-скобок:



А теперь вопрос на миллион долларов: что будет, когда мы включим датчик вращения электрона? Щелкнет он или нет?

Согласно квантовой механике, и то и другое. Отчасти он зарегистрирует вращение по часовой стрелке, отчасти – против. Словно бы наш электрон сделал из одного датчика два.

И снова рисунок с кет-скобками:



Обратите внимание, что в серых скобках у нас две разные мини-истории: в одной электрон вращается по часовой стрелке и датчик щелкает, а в другой электрон вращается против часовой стрелки и датчик никак не реагирует.

Теперь подождем, пока сигнал от датчика дойдет до пистолета. Выстрелит ли пистолет, или пуля останется в магазине?

Ответ такой же, как и для датчика: и то и другое. Пистолет расщепляется на две копии – одна выстрелит, другая нет:



И это подводит нас к вопросу о коте.

Должно быть, вы уже догадались, какая участь его ждет. Кот, как и датчик вращения с пистолетом, расщепится на две версии: одна погибнет от пули, а вторая останется в живых и продолжит вершить великие кошачьи дела.

Вот итоговое состояние всего в нашей коробке:



Заметьте: теперь мы можем рассказать о содержимом коробки две совершенно независимые истории. В одной электрон вращался по часовой стрелке, пистолет выстрелил и кот погиб, в другой вращение было против часовой стрелки, пистолет не выстрелил и кот остался в живых.

И то и другое правда. Ни та ни другая версия не правдивее другой. Они сосуществуют внутри коробки.

Электрон вращается по часовой стрелке или против? И то и другое.

Щелкал датчик или нет? И то и другое.

Жив кот или мертв? И то и другое. (Хештег «зомбокот».)

Вниз по кроличьей норе

Ясное дело, к моему рассказу вы отнеслись скептически. Вы же никогда не видели кота, который наполовину мертв, наполовину жив.

Возможно, вам даже хочется сказать: «Очевидно, что квантовая механика не работает, ведь я никогда не видел зомбокотов, все это полная ерунда».

Но вот в чем беда: квантовая механика дает нам лучшие предсказания, так что с ней не может сравниться никакая другая физическая теория устройства вселенной за всю историю человечества – то есть буквально никакая. Поэтому нельзя нам выплескивать ребенка вместе с водой.

Нам волей-неволей придется как-то объяснить, почему квантовая механика учит, что зомбокоты бывают, хотя никто их ни разу не видел.

В двадцатые годы ХХ века датский физик-сескипедалофил[2] Нильс Бор предпринял первую полноценную попытку объяснить, как такое может быть.

 

«Сам я зомбокотов никогда не видел, – подумал Нильс Бор, вероятно, по-датски. – Если зомбокот существует ровно до того момента, как я на него взгляну, значит, либо во мне, либо в оборудовании, которое я использую для наблюдения, есть что-то особенное, что вынуждает кота избрать какое-то одно состояние (либо жив, либо мертв), когда я на него смотрю. Похоже, акт наблюдения заставляет зомбокота „коллапсировать“ – кот вынужден выйти из гибридного состояния, когда он одновременно и жив и мертв, и стать либо только живым, либо только мертвым, но не то и другое вместе. Коллапс – вот ответ, скажу я вам!»

Вот что предложил Бор:



У идеи Бора о коллапсе был один недостаток: он так четко и не объяснил, что именно считается «наблюдением» и кого или что можно считать «наблюдателем». Он намекал, что «большие» объекты вроде микроскопов и камер, скорее всего, отвечают за коллапс систем поменьше, но детали как-то замылил.

Наверняка Бор знал только одно: коллапс должен происходить достаточно рано, чтобы «крупные» предметы вроде футбольных мячей не существовали в нескольких местах одновременно и не вращались в нескольких направлениях сразу, поскольку такого мы в окружающем мире не встречаем.

Для слабонервных физиков, боявшихся утратить опору на реальность, коей они наслаждались до начала ХХ века, даже сшитое на живую нитку понятие коллапса, предложенное Бором, было лучше, чем ничего. Оно помогло временно унять тревогу и вернуться к работе, не страшась, что тебе вот-вот померещится зомбокот. По крайней мере, Бор на это надеялся.

Однако идея коллапса, которую живописал Бор, понравилась далеко не всем.

Крупнейшим противником Бора оказался не кто-нибудь, а ходячая реклама кондиционера для волос – Альберт Эйнштейн.

Ход Эйнштейна

Решение проблемы зомбокота, предложенное Бором, обладало одной чертой, которую Эйнштейн просто на дух не переносил. Оно предполагало случайность.

Если верить Бору, сам акт наблюдения нашего зомбокота заставляет вселенную случайным образом выбрать, в какое из двух состояний кот должен коллапсировать. Бор полагал, что эта случайность фундаментальна. По его мнению, предсказать исход коллапса теоретически невозможно, какими бы хитроумными и точными ни были измерительные инструменты. Сама вселенная не знает, какой результат выдаст в тот момент, когда вы сделаете свое наблюдение.

Однако Эйнштейн рос в эпоху ньютоновской физики, в то время, когда считалось, что вселенная фундаментально предсказуема, а любое событие можно проследить до его истоков по цепочке причинно-следственных связей. В этом ньютоновском мире, если у тебя есть достаточно информации о вселенной в какой-то момент прошлого, ты можешь уверенно предсказать будущее – вплоть до каждого электрона, вращающегося по часовой стрелке, и каждого кота, живого или мертвого.

Эйнштейн обожал предсказуемость. Он считал, что это красиво. А картина Бора с ее непредсказуемыми, случайными коллапсами была, с его точки зрения, уродливой. Вот он и отказался в нее верить.

Честное слово, он именно так и рассуждал. Не приводил никаких хитроумных математических выкладок. Никаких гениальных наблюдений, касающихся орбиты Сатурна или солнечных затмений. Просто «а по-моему, твоя теория некрасивая».

Забавная штука: большинство считает, что физики – это такие благородные искатели научной истины, но на самом деле люди уровня Бора и Эйнштейна не лишены предрассудков, как и все мы. Один физик считает, что вселенная должна быть детерминистической и в ней нет места случайности, другой – что случайность изначально присуща природе, третий – что законы физики придумал всеведущий Создатель с единственной целью максимизировать в космосе количество бургерных, работающих по франшизе. Мнение физика по подобным вопросам нередко строится на той же интуиции и глубинных предрассудках, что и любое другое мнение. Но об этом позже.

К тому времени, когда Эйнштейн и Бор затеяли спор о коллапсе и детерминизме, уже множество экспериментов продемонстрировали, что квантово-механические частицы могут вести себя вроде бы по-настоящему случайно. Так что Эйнштейну надо было показать, что эта случайность – иллюзия.

Задача могла оказаться не такой уж трудной. Ведь большинство того, что мы с вами привыкли считать «случайным», – то же подбрасывание монетки – на самом деле вовсе не случайно.

То есть как это – подбрасывание монетки не случайно?! Рад, что вы спросили.

Да, подбрасывание монетки на самом деле не дает случайных результатов. Если бы у вас было достаточно информации об этой монетке – например, вы знали бы все ее габариты, и как распределен ее вес, и как на ее полет повлияет сопротивление воздуха, и так далее и тому подобное – и еще под рукой имелся суперкомпьютер, чтобы симулировать бросок, вы рано или поздно определили бы со стопроцентной точностью, что выпадет в следующий раз – орел или решка. Случайность исхода при подбрасывании монетки – это иллюзия: мы лишь думаем, будто орел или решка выпадают случайно, поскольку расчеты, которые нужно проделать, чтобы предсказать, какой получится результат, так чудовищно сложны, что мы просто машем на них рукой и говорим: «Ладно, будем считать, что это случайность!»

Будь мы достаточно одержимы, в наших силах было бы уверенно предсказывать результаты при подбрасывании монетки, но у большинства из нас обычно слишком много других дел, надо работать, да и вообще, так что руки у нас до этого пока не дошли.

По мысли Эйнштейна, если как следует приглядеться, мы в итоге обнаружим, что «случайные» результаты экспериментов (вроде «живой кот» и «мертвый кот» или «вращение по часовой стрелке» и «вращение против часовой стрелки») тайно контролируются переменными, о которых мы просто не задумывались. Эти скрытые переменные – что-то вроде массы, распределения веса и прочих характеристик нашей монетки: если бы мы могли определить их значения, случайности в квантовой механике не осталось бы места.

Последние годы жизни Эйнштейн посвятил лихорадочным поискам соответствующей теории, но так и не сумел сформулировать убедительную интерпретацию со скрытыми переменными – однако другим это в конце концов удастся.

Спор Эйнштейна и Бора привел к самому настоящему расколу общества в борьбе за сердце и душу квантовой физики. В последующие годы Бор, отправившись в кругосветное лекционное турне, проповедовал свою идею коллапса всем встречным и поперечным. И со временем его идеи стали считаться «ортодоксальной» интерпретацией законов квантовой механики – не в последнюю очередь благодаря его упорству, умению убеждать и политическому чутью.

Однако эти же идеи проложили путь к новому витку квантово-механических спекуляций, которым предстояло вывести на передний план сознание как таковое.

Сознание становится квантовым

Научное сообщество было так напугано проблемой зомбокота, что сбилось с ног в поисках ее решения. Дошло до того, что ученые готовы были принять едва ли не любое объяснение, лишь бы его выдвинул кто-нибудь аккуратно причесанный (прости, Эйнштейн) и от природы обаятельный. Обаяние среди физиков и в лучшие-то времена на вес золота, поэтому Нильс Бор и его теория коллапса оказались безальтернативным вариантом.

Беда в том, что нарисованная Бором картина вызывала неприятные вопросы:


1. Что в людях или их измерительных инструментах такого особенного, что они могут заставить квантовую систему (вроде нашей системы из электрона/датчика/пистолета/кота) коллапсировать в одно конкретное состояние (например, «мертвый» или «живой»)?

2. Обладает ли кот способностью заставить коллапсировать электрон/датчик/пистолет? А обезьяна?

2Избавлю вас от поисков в интернете: «сескипедалофил» – это длинное сложное слово, означающее человека, который любит длинные сложные слова. Бор славился тем, что свои объяснения квантовых понятий формулировал абсолютно неудобочитаемо, пересыпая их философским жаргоном.
1  2  3  4  5  6  7  8  9  10  11  12  13  14 
Рейтинг@Mail.ru