Редактор Боходир Хошимович Каримов
Редактор Фаррух Муроджонович Шарофутдинов
Дизайнер обложки Ибратжон Хатамович Алиев
Иллюстратор Ибратжон Хатамович Алиев
Корректор Абдурасул Абдусолиевич Эргашев
Рецензент, доктор технических наук, доцент научно-исследовательского института полупроводников и микроэлектроники при Национальном Университете Узбекистана Оббосхон Хакимович Кулдашев
Рецензент, доктор физико-математических наук, профессор физико-технического факультета Ферганского Государственного Университета Салим Мадрахимович Отажонов
Рецензент, кандидат физико-математических наук, доцент физико-технического факультета Ферганского Государственного Университета Боходир Хошимович Каримов
Научный руководитель, Академик Научной школы "Электрон" Боходир Хошимович Каримов
Научный консультант, магистр факультета математики-информатики Ферганского Государственного Университета Олимхон Улугбекович Ахмедов
Экономический руководитель, главный учёный секретарь Научной школы "Электрон" Фаррух Муроджонович Шарофутдинов
Экономический консультант, Экономический Профессор Научной школы "Электрон", представитель Малазийской компании "Clipper Energy" Ботирали Рустамович Жалолов
© Ибратжон Хатамович Алиев, 2023
© Марат Альбертович Бурнашев, 2023
© Ибратжон Хатамович Алиев, дизайн обложки, 2023
© Ибратжон Хатамович Алиев, иллюстрации, 2023
ISBN 978-5-0056-4534-0
Создано в интеллектуальной издательской системе Ridero
Нет сомнений: вселенная бесконечна.
Эпикур
Развитие физических наук вместе со всеми её аспектами, приводит к необходимости развития его математического аппарата, также и приводя к необходимости разрешения уже математических проблем и нахождения процесса их решения. И одной из таких проблем является решение уравнений, связанных с делением на ноль, но как оказалось, эта проблема становиться более обширной и приводит к образованию даже настоящего нового вида чисел. В данной работе рассмотрен вопрос самого определения двух разновидностей новых чисел, получивших своё название из латинского языка как ингенциальные и пер-ингенциальные числа, которые могут при вводе их в математический аппарат привести к большим успехам и указать новые горизонты в различных исследованиях, что и доказывает их актуальность. Вместе с этим важно отметить возможность их применения в самых различных областях науки и техники приводя к новым результатам.
На сегодняшний день опубликовано несколько научных статей на данную тему и проведены расчёты, но подробных исследований в этой области не было замечено и не было проведено, благодаря чему это исследование является единственной в своём роде работой за всю историю математики, где рассматривался бы этот её новый раздел.
Говоря о базе образования этих чисел, можно сказать, что она была выработана из комплексных чисел. И если обращаться к истории комплексной математики, то необходимо вспомнить труды знаменитого Кардано «Великое искусство, или об алгебраических правилах» 1545 года, где он при решении квадратного уравнения получил отрицательное число под корнем. Также уже после работ Бомбелли 1572 года уже стало известны о возможности использования комплексных чисел при решении кубических уравнений различных разновидностей.
Но комплексные числа в основном помогли определить сам алгоритм процесса математического описания данных чисел, ибо сами по себе некогда являлись невообразимыми и лишь после представления их в решении уравнения Шрёдингера для описания действительных элементарных частиц, стали частью науки как действительно существующие в природе.
Переходя же к уравнениям связанные с делением на ноль, то эти уравнения встречались во многих случаях и всегда указывались как не имеющие решения, но как показывают сегодняшний исследования они действительно существуют. Так, по некоторым результатам данной работы, эти числа могут быть сравнимы по своей важности и неординарности с кватернионами и иными высокими степенями нестандартных в математике чисел.
Целью данного исследования является полноценное определение понятия ингенциальных и пер-ингенциальных чисел, после процесса исследования релятивистской функции, а также определение местоположения на числовой оси. Вместе с этим определение арифметических и алгебраических операций над этими числами, участие их в различных теориях, указание различных операций над ними до некоторого определённого уровня первоначальной математики. Далее уже следует переход на последующий этап исследования.
Задачи исследования являются:
· Определение первоначальных понятий числа и его разновидностей;
· Представление операций с различными видами чисел;
· Исследование релятивистской функции с указанием последующих выводов;
· Указание понятия ингенциальных чисел и определение их местонахождения на числовой оси;
· Изучение процессов проведения алгебраических и арифметических операций с ингенциальными числами;
· Представление роли ингенциальных чисел в тригонометрическом представлений;
· Решение уравнения Эйлера с ингенциальными числами;
· Указание геометрического смысла ингенциальных чисел;
· Определение местонахождения комплексных чисел на числовой оси;
· Указание понятия пер-ингенциальных чисел и определение их местонахождения на числовой оси;
· Изучение процессов проведения алгебраических и арифметических операций с пер-ингенциальными числами;
· Представление роли пер-ингенциальных чисел в тригонометрическом представлений;
· Решение уравнения Эйлера с пер-ингенциальными числами;
· Указание геометрического смысла пер-ингенциальных чисел.
Объектом данного исследования являются ингенциальные и пер-ингенциальные числа.
Предметом исследования является процесс определения всевозможных операций в ингенциальной математике.
При проведении данной работы применён теоретический метод исследования.
Научная новизна данной работы заключается в следующем:
· Первое исследование функции для релятивистской энергии как полностью математический объект;
· Определение местонахождения на числовой оси комплексных чисел;
· Первое указание понятия ингенциальных чисел и определение их местонахождения на числовой оси;
· Изучение процессов проведения алгебраических и арифметических операций с ингенциальными числами;
· Представление роли ингенциальных чисел в тригонометрическом представлений;
· Решение уравнения Эйлера с ингенциальными числами;
· Указание геометрического смысла ингенциальных чисел;
· Первое определение местонахождения комплексных чисел на числовой оси;
· Указание понятия пер-ингенциальных чисел и определение их местонахождения на числовой оси;
· Изучение процессов проведения алгебраических и арифметических операций с пер-ингенциальными числами;
· Представление роли пер-ингенциальных чисел в тригонометрическом представлений;
· Решение уравнения Эйлера с пер-ингенциальными числами;
· Указание геометрического смысла пер-ингенциальных чисел.
Практические результаты заключаются в следующем:
· Положен новый этап в развитии математического аппарата запутанных квантовых состояний;
· Открыта возможность решения уравнений Шрёдингера и иных уравнений, связанных с комплексными числами, благодаря ингенциальным операциям;
· Полное или частичное выполнение функций комплексных чисел ингенциальными выражениями и операциями.
Достоверность результатов основана на чисто математическом представлении данной операции с последующими составляющими и выводами, благодаря чему не подлежит какому-либо сомнению.
Говоря о значимости данного исследования, то уместно отметить тот факт, что при использовании данной математики в широком спектре, это может привести к созданию целого ряда самых различных удобств при решении задач, выполнении многочисленных функций и прочих.
Данное исследование было обсуждено на собрании учёных Научной школы «Электрон», при Организации «Электрон» и созданный совместно с Ферганским Государственным Университетом. Также данный проект является одним из первых проектов, активно развивающихся в стенах новой Научной школы, и порождает целый ряд направлений для новых исследований.
Таки образом, можно сказать, что проект «Ингенциальной математики» уже делает свои первые шаги в направлении успеха и своего развития, порождая новые направления и многообещающие результаты, которые с большой вероятностью могут оказаться настоящим прорывом в науке!
Бурнашев Марат АльбертовичИбратжон Хатамович Алиев