bannerbannerbanner
Тайна жизни: Как Розалинд Франклин, Джеймс Уотсон и Фрэнсис Крик открыли структуру ДНК

Ховард Маркел
Тайна жизни: Как Розалинд Франклин, Джеймс Уотсон и Фрэнсис Крик открыли структуру ДНК

[2]
Монах и биохимик

Законы, управляющие наследственностью, по большей части неизвестны. Никто не может сказать, почему одна и та же особенность у различных особей одного и того же вида или у различных видов иногда наследуется, а иногда нет; почему у ребенка часто наблюдается возврат к некоторым признакам деда, бабки или еще более отдаленных предков; почему какая-нибудь особенность часто передается от одного пола обоим или только одному и чаще всего, хотя и не исключительно, тому же полу[8].

ЧАРЛЬЗ ДАРВИН, 1859 Г.{25}

Все началось в аббатстве, воздвигнутом на вершине холма в моравском городе Брюнн (теперь Брно в Чешской Республике). В 1352 г. монахи-августинцы выстроили для монастыря оштукатуренное каменное двухэтажное здание в форме буквы Г, увенчанное остроконечной крышей с оранжевой глиняной черепицей. В центре первого этажа расположились трапезная и библиотека, над ними находился длинный открытый дормиторий для братии. Эти помещения выходили окнами одной стороны на слияние рек Свитавы и Свратки, а другой – на готическую базилику Вознесения Девы Марии, построенную из красного кирпича. Тогдашние власти назвали монастырь аббатством Св. Фомы в честь апостола, который сначала усомнился в воскресении Иисуса Христа (отсюда выражение «Фома неверующий»).

В залах и галереях здания царила необыкновенная тишина, нарушаемая лишь чириканьем птиц, которых держали на территории аббатства в клетках из проволочной сетки для защиты от хищников. Из расположенной по соседству пивоварни «Старобрно», утолявшей жажду местных жителей с 1325 г., несло ароматами кипящего сусла, хмеля и дробины. В углу центрального двора поместился тщательно возделываемый садик, окруженный ухоженным газоном. Здесь монах по имени Грегор Мендель выращивал помидоры, фасоль и огурцы{26}. Его главной гордостью был горох, разросшиеся стебли которого всевозможных форм, размеров и оттенков образовывали живое подобие решетки Пеннета{27}.

Иоганн Мендель (имя Грегор он принял, когда вступил в орден августинцев) родился в 1822 г. в семье фермера, которая возделывала участок земли возле границы Моравии и Силезии. В детстве Менделю нравилось работать в саду и ухаживать за пчелами. Он сменил несколько школ в своем районе и в 1840 г. поступил в университет в близлежащем Оломоуце. Через три года ему пришлось бросить учение, потому что денег было мало, а плата оказалась высокой.

В 1843 г. Мендель с намерением продолжить учебу оставил мирские блага и начал монашескую жизнь в аббатстве Святого Фомы. В ночных молитвах он благодарил Бога за то, что не нужно больше ломать голову над тем, как свести концы с концами или выплатить семейные долги. У него была удобная кровать и достаточно пищи. Аббатство в ту пору было интеллектуальным центром Брюнна, и Мендель в 1851 г. убедил настоятеля найти средства оплатить его обучение в Венском университете{28}. Там Мендель преуспел в изучении физики, агрономии, биологии и в исследованиях врожденных признаков растений и овец. Обладавшего выдающимися умственными способностями Менделя можно уподобить не Фоме неверующему, а подвижнику и провидцу святому Антонию.

В 1853 г., когда брат Грегор вернулся в Брюнн, настоятель поручил ему преподавать физику в местной школе, хотя тот дважды завалил устный экзамен на получение диплома учителя. Менделю больше нравилось ухаживать за садом, чем выполнять обязанности в приходе. На крохотном клочке земли он взрастил современное учение о наследственности. Ежедневно Мендель тщательно записывал свои наблюдения за семью изменчивыми признаками в последовательных поколениях самоопыляющегося гороха: высотой растений, формой и окраской стручков, формой и окраской горошин, расположением и окраской цветков.

Вскоре после того, как Мендель начал скрещивать высокорослые растения с низкорослыми, он заметил, что все растения в следующем поколении вырастают высокими. Он назвал высокорослость доминантным признаком, а низкорослость – рецессивным. Но в поколении, полученном от гибридных растений, наблюдались оба признака: имелись и высокорослые экземпляры, и низкорослые в соотношении 3:1. Мендель обнаружил это устойчивое соотношение также для других доминантных и рецессивных признаков гороха. В итоге он вывел математическую формулу, предсказывающую проявление этих признаков в последующих поколениях и скрещиваниях{29}. Он полагал, что наблюдаемые им явления обусловлены некими невидимыми факторами – ныне известно, что это гены.


Брат Грегор рассказал о своих исследованиях на двух вечерних собраниях брюннского Общества естествознания 8 февраля и 8 марта 1865 г. Сегодня на научном семинаре странно было бы увидеть монаха в черной шерстяной рясе до щиколоток и с островерхим капюшоном, свисающим на спину. А тогда Общество естествознания нередко посещали обитатели аббатства, приходили туда также горожане-интеллектуалы и даже интересующиеся фермеры из соседних сел. У Менделя были лишь доска и мел, чтобы представить свои сложные формулы; делая доклад, он почти шептал – сказывались долгие годы монастырского молчания, – но тем не менее и впечатлил, и озадачил сорок с лишним присутствующих.

Позднее в том же году Мендель опубликовал свои сообщения в Verhandlungen des naturforschenden Vereines in Brünn – печатном издании Общества естествознания. К сожалению, оно не пользовалось широкой известностью, и открытия Менделя не всколыхнули мир. Их по́зднее признание часто объясняют малозаметностью публикации, но дело не только в этом. Идея Менделя о дискретности наследственности – о передаче потомству предсказуемых элементов – противоречила господствовавшему в ту эпоху представлению о функционировании и размножении живых организмов. Считалось, что деятельность органов и даже особенности личности ребенка определяются соотношением четырех жидкостей тела: крови, слизи, желтой желчи и черной желчи{30}. Эта многовековая теория была совершенно неверна, но, чтобы опровергнуть ее, понадобилось еще несколько десятилетий научного поиска. Кроме того, математические методы, к которым прибег Мендель для анализа полученных данных, были чужды мышлению биологов и натуралистов того времени, многим было еще трудно хотя бы постичь теорию Дарвина, если уж не принять; они привыкли лишь собирать, описывать и классифицировать различные виды исходя из морфологических признаков{31}.

 

К сожалению, последние семнадцать лет жизни Мендель являлся настоятелем аббатства Св. Фомы и тратил время на многочисленные служебные обязанности, увязая в спорах о налоговых обязательствах монастыря с бюрократическим аппаратом Австро-Венгерской империи. Он умер в 1884 г. в возрасте 62 лет от хронической болезни почек. Лишь через шестнадцать лет после его смерти, в 1900 г., голландский ботаник Хуго де Фриз, австрийский агроном Эрих фон Чермак-Зейзенегг, немецкий ботаник Карл Корренс и американский специалист по экономике сельского хозяйства Уильям Спиллман независимо друг от друга экспериментировали со скрещиванием и получили данные, сходные с менделевскими, а также обнаружили затерявшуюся в архивной пыли статью Менделя{32}. Только самые одержимые темой наследственности помнят сегодня этих четырех ученых, потому что они благородно (и честно) признали первенство Грегора Менделя. В последние годы высказывалось предположение, что Мендель выдумал свои данные, потому что математические соотношения, которые он привел в своей статье, слишком точны, чтобы быть достаточно вероятными со статистической точки зрения. Однако множество биологов и специалистов по биостатистике решительно встали на защиту Менделя{33}. Теперь превалирует мнение, что данные Менделя вполне корректны и он был честен в описании своих опытов.

Повторное открытие законов Менделя, управляющих передачей простых рецессивных и доминантных признаков, заложило основу современной генетики. С тех пор он обрел заслуженное бессмертие как отец классической генетики. Но в этой системе понятий есть серьезная проблема: большинство наследуемых признаков не являются простыми, будучи обусловлены взаимодействием нескольких генов, экспрессия которых может также изменяться под влиянием средовых, социальных и иных факторов.



Через три года после выхода статьи Менделя в свет, осенью 1868 г., в Тюбингене Фридрих Мишер собирал гной с бинтов хирургических больных. Новоиспеченный швейцарский врач (он получил степень доктора медицины в Базеле в 1868 г.), Мишер происходил из почтенной и состоятельной семьи. Его отец, Иоганн Фридрих Мишер, был профессором физиологии, а дядя, Вильгельм Гис, – профессором анатомии в Базельском университете; Гис сделал немало открытий в нейробиологии, эмбриологии и гистологии{34}.

Мишер с детства плохо слышал из-за хронической инфекции в сосцевидном отростке. Это мешало ему сначала в годы учебы, затем при работе с больными, осложняя общение с ними. Отец и дядя Мишера сочли, что ему лучше не приступать сразу к клинической практике. Благодаря своим связям они устроили его в лабораторию профессора Феликса Гоппе-Зейлера в Тюбингенском университете. Гоппе-Зейлер – один из основателей современной биохимии; помимо прочего, он открыл функцию красных кровяных телец (эритроцитов), которая состоит в переносе кислорода белком гемоглобином, и роль железа в этом процессе.

Лаборатория Гоппе-Зейлера располагалась в подвальных помещениях замка Хоэнтюбинген. Она представляла собой ряд тесных помещений с глубоко утопленными в стены арочными окнами, выходившими на реку Неккар и долину реки Аммер. Мишер полюбил это место, где под руководством Гоппе-Зейлера занялся изучением состава нейтрофилов и других белых кровяных телец (лейкоцитов), циркулирующих в кровяном русле и нейтрализующих чужеродные клетки и частицы, тем самым препятствуя инфекциям. Лейкоциты были выбраны потому, что они содержатся в крови, а не в более плотных тканях организма, и, следовательно, их легче выделить и очистить. Кроме того, у этих клеток относительно крупное ядро, хорошо видное в световой микроскоп, а ядро – это, можно сказать, центр управления клетки.

Оказалось, что лучше всего получать лейкоциты из серо-зеленых, пропитанных гноем бинтов с ран хирургических пациентов. В середине XIX в. хирурги считали, что гной как побочный продукт заживления операционной раны имеет доброкачественный эффект и чем больше образуется гноя, тем выше шансы на выздоровление. Как теперь известно, нагноение чаще всего возникает из-за нечистых рук и инструментов, а избыточное выделение гноя приводит к послеоперационной инфекции. Нередко из-за «доброкачественного» гноя инфекция распространялась с кровотоком по всему организму и развивалось смертельно опасное состояние – сепсис.



Как часто случается в научном поиске, Мишеру сыграло на руку появление новой технологии, разработанной другим исследователем, а именно Виктором фон Брунсом, возглавлявшим хирургическую клинику Тюбингенского университета. Профессор фон Брунс придумал хлопковый тканый материал с высокими абсорбирующими свойствами, которому дал название «ватный хлопок» (теперь он называется марлей). Вместе с послеоперационными инфекциями этот новый перевязочный материал, впитывающий жидкости как губка, ежедневно обеспечивал Мишера гноем{35}.

Со временем Мишер нашел наилучший способ отделять нежные лейкоциты от жидкой части гноя из перевязочного материала, не повреждая и не убивая их, что было непростой задачей. К счастью, с его, как говорится, легкой руки появился метод, который позволил получить в осажденном виде ранее не описанное вещество с высоким содержанием фосфора, проявлявшее свойства кислоты. Мишер установил, что это вещество содержится только в ядре клетки, и назвал его нуклеином (от латинского nucleus – «ядро»). В наше время обнаруженное Мишером вещество называется дезоксирибонуклеиновой кислотой, сокращенно ДНК{36}. Зачастую ошибочно говорят, будто Уотсон и Крик открыли ДНК. В действительности они открыли молекулярную структуру вещества, которое Фридрих Мишер выделил и охарактеризовал химически на восемьдесят четыре года раньше – в 1869 г.

В 1871 г. Мишер перебрался из Тюбингена в Лейпциг, где стал работать под руководством прославленного физиолога Карла Людвига{37}. В том же году он подготовил статью о своих исследованиях нуклеина, и после тщательной проверки результатов, отличавшихся высокой воспроизводимостью, Феликс Гоппе-Зейлер согласился опубликовать ее в престижном журнале Medicinisch-chemische Untersuchungen, редактором которого являлся. В редакционном предисловии к статье Мишера Гоппе-Зейлер авторитетно подтвердил научную новизну открытия нуклеина{38}.

В следующем году Мишер вернулся в родной Базель проходить хабилитацию – читать лекции и готовиться к занятию академической должности согласно процедуре, принятой для молодых врачей Германии, Австрии и Швейцарии в XIX в.{39} В возрасте 28 лет он получил предложение возглавить кафедру физиологии и занять должность профессора в Базельском университете. Поскольку в этом учебном заведении высокие посты принадлежали его отцу и дяде, коллеги-завистники безосновательно жаловались на кумовство. Мишер, став блестящим исследователем, доказал, что они ошибаются.

 

Поскольку Базель раскинулся на берегах Рейна, одной из важнейших отраслей хозяйства в городе была ловля лосося. А сперматозоиды лосося легко выделить и очистить даже теми методами, которые были известны во времена Мишера. Кроме того, эти клетки имеют очень крупное ядро, так что из них получается много нуклеина, пригодного для исследований. И Мишер взялся за рыбалку, чтобы обеспечить себе неиссякаемый источник молок лосося. Химический анализ тогда был очень трудоемким и долгим, к тому же поначалу образцы нуклеина бывали загрязнены белками и входящей в их состав серой, но в конце концов Мишер установил, что нуклеин состоит из углерода, фосфора, водорода, кислорода и азота.

В 1874 г. Мишер опубликовал сообщение о том, что ядра клеток различных видов позвоночных имеют много общего, но и несколько различаются. В частности, в этой статье есть сформулированное довольно сдержанно, но по сути сенсационное предположение, что если конкретной причиной оплодотворения является индивидуальное вещество, то следует рассматривать в первую очередь нуклеин{40}. Однако Мишер не мог объяснить, каким образом столь сложным процессом, как репродукция, может управлять единственное химическое соединение с таким ограниченным разнообразием, и сделал вывод, что, как он выразился, «не существует конкретного вещества, определяющего оплодотворение»{41}.

Как и Грегор Мендель, Мишер был вынужден заниматься административными делами, теряя на них время, которое лучше было бы посвятить размышлениям. Он умер от туберкулеза в 1895 г. на 52-м году жизни. В его честь назван Институт медико-биологических исследований Базельского университета. Однако за пределами Базеля лишь немногие помнят имя и труды Мишера. Прошло больше полувека, прежде чем удалось выяснить функции и роль ДНК. К сожалению, до этого в академических кругах понимание природы наследственности было далеко от истины.

[3]
До двойной спирали

С конца 1880-х гг. и особенно в первые три десятилетия XX в. многие белые мужчины-англосаксы из высших слоев общества (а также их жены и дети) весьма беспокоились о будущем генофонде своего народа{42}. Их страхи опирались на псевдонаучную схему, предложенную в 1883 г. британским натуралистом Фрэнсисом Гальтоном, который приходился двоюродным братом Чарльзу Дарвину. Гальтон предложил концепцию, названную им евгеникой (от греческого корня εύγενής – «хорошего рода, благородный от рождения»), и план улучшения здоровья населения, заключавшийся в том, чтобы предоставить более годным расам больше возможностей быстро достичь численного превосходства над менее годными{43}. Евгеника со скоростью лесного пожара распространилась среди белых интеллектуалов Европы, проникнув и в Америку.

В Соединенных Штатах Америки в 1900–1920 гг., когда царил прогрессивизм, поколение реформаторов стремилось противостоять актуальным социальным проблемам, в том числе положению городской бедноты, неграмотности, ассимиляции огромного множества мигрантов, прибывающих на берега Северо-Американского континента, а также демографическим проблемам, включая эпидемии, высокую детскую смертность и прирост населения. Эти реформаторы часто прибегали к ошибочным положениям евгеники применительно к людям, которых считали нежелательными: к умственно неполноценным (врачи и психологи обозначали их терминами «имбецилы», «идиоты» и «дебилы»), слепым, глухим, психически больным, инвалидам, эпилептикам, сиротам, матерям-одиночкам, представителям коренных народов Америки, афроамериканцам, иммигрантам, обитателям городских трущоб, неимущим жителям Аппалачей и ко множеству других «аутсайдеров». По утверждению прогрессивистов, все эти низшие группы населения представляли экзистенциальную угрозу экономическому, политическому и нравственному здоровью американского общества.

Евгеника дала американским властным структурам авторитетную наукообразную основу для расовых предрассудков в отношении тех, кого они считали опасными. Решение проблем нашли в том, чтобы изолировать нежелательных лиц, отгораживаться от них и не позволять им загрязнять господствующую «высшую расу» – урожденных белых американцев{44}. «Высших» с точки зрения евгеники, а именно белых англосаксов-протестантов, поощряли к размножению – этот подход получил название позитивная евгеника. Людям, которые считались носителями худших, «низших» генов, то есть практически всем остальным, активно препятствовали в продолжении рода мерами негативной евгеники, например государственными законами о стерилизации умственно отсталых, ограничениями на заключение межрасовых и других смешанных браков, обязательным анализом крови на венерические заболевания для получения разрешения на брак, методами контроля рождаемости и строгими нормами права на усыновление. К еще более угрожающей социальной политике вели призывы местных уроженцев к ограничению въезда иммигрантов, рассматриваемых ими как неспособных к ассимиляции. Используя евгеническую пропаганду для создания доказательной базы, Конгресс США принял в 1924 г. закон, ограничивающий въезд иностранцев на сорок с лишним лет. Эта политика обрекла на смерть миллионы евреев в Германии в Восточной Европе, лишив их возможности спастись от гитлеровских зверств путем эмиграции в Соединенные Штаты{45}.

Эпицентром американского евгенического движения были Станция экспериментальной эволюции и Бюро регистрации евгенических исследований (Eugenics Record Office, ERO) в Колд-Спринг-Харбор на Лонг-Айленде, которым руководил Чарльз Бенедикт Давенпорт, учившийся в Гарвардском университете и принятый в престижную Национальную академию наук США{46}. ERO было основано в 1910 г. на средства, завещанные Мэри Гарриман – женой железнодорожного магната Эдварда Генри Гарримана, а также на пожертвования Института Карнеги в Вашингтоне (округ Колумбия), Джона Рокфеллера – младшего и Джона Харви Келлога, который изобрел кукурузные хлопья и возглавлял санаторий в Баттл-Крик. Сейчас на месте ERO располагается Колд-Спринг-Харборская лаборатория, где долго директорствовал, расширяя и популяризируя ее, Джеймс Уотсон, пока из-за расистских высказываний его не освободили от этой должности{47}. Аспиранты Школы биологических наук Колд-Спринг-Харборской лаборатории до сих пор живут в мрачном викторианском общежитии, где когда-то обитал Чарльз Давенпорт.

В годы переоткрытия законов Менделя на основе его суждений развернулась масса дискуссий в обществе, которые в ERO были, как нигде, плодотворными и масштабными. А евгенисты распространили выводы, сделанные Менделем из опытов с растением гороха, на сложные социальные проблемы. Давенпорт объявил войну всем, кого считал угрозой чистоте генофонда нации{48}. В 1910 г. на собрании комитета по евгенике Американской ассоциации селекционеров он провозгласил: «Общество должно защищать себя; как оно требует лишить жизни убийцу, так может уничтожить и отвратительную гадину безнадежно дурной протоплазмы»{49}.

К тому времени Давенпорт руководил целой армией социальных работников, исполнителей полевых исследований, социологов и биологов, составлявших длинные сводки результатов изучения родословных, которые ошибочно трактовались с целью оценки наследственных основ различных национальных особенностей, например сладострастия и преступных наклонностей, характерных, по мнению Давенпорта, для итальянцев; неврастении, туберкулеза и деловой хватки, свойственных евреям; слабоумия, носившего повальный характер среди живущих в беспросветной нищете обитателей Аппалачей; склонности цыган и бомжей к бродяжничеству и даже врожденной любви к морю – талассофилии – у моряков.

Давенпорт считал, что евреи из Восточной Европы являли собой особенно серьезную угрозу для американского общества. 7 апреля 1925 г. Давенпорт заявил, обращаясь к своему другу Мадисону Гранту: «Наши предки переселили в Род-Айленд баптистов из Массачусетс-Бей, но у нас нет места, куда привезти евреев. Да, тогда жгли ведьм, но сейчас было бы против моральных норм сжечь сколько-нибудь существенную часть населения»{50}. Грант – консерватор, юрист, попечитель Американского музея естественной истории – тоже был видным сторонником евгеники. В 1916 г. он написал книгу «Конец великой расы» (The Passing of the Great Race), в которой продвигал меры против иммиграции, сегрегацию нежелательных рас и – поскольку считал, что множество американцев имеют «низкое» происхождение, – принудительную стерилизацию. Эта книга имела самые мрачные последствия в нацистской Германии. Адольф Гитлер называл главный труд Гранта «моя библия», когда разрабатывал печально известные программы расовой гигиены, уничтожившие шесть миллионов евреев и миллионы гомосексуалов, цыган, инвалидов, политических и религиозных заключенных и других людей, казавшихся фюреру непригодными для Третьего рейха{51}.



Далеко не все ученые тогда запятнали себя евгеникой. Были и те, кто упорно трудился, закладывая основы современной генетики. Самый важный вклад внесли исследователи, доказавшие, что нитевидные структуры в клеточном ядре, называемые хромосомами, содержат частично или полностью генетический материал живого организма – то, что мы теперь называем генами. В нескольких лабораториях были разработаны методы, позволившие установить, что хромосомы состоят из белков и дезоксирибонуклеиновой кислоты (ДНК). Работы других ученых сформировали новую область науки – популяционную генетику, изучающую наследственную изменчивость внутри различных групп особей одного вида и между группами{52}.

Для них всех, однако, оставался загадкой биологический механизм воспроизводства живых существ. Прежде чем стало бы возможным искать ответ на этот принципиальный вопрос, должна была возникнуть совершенно новая наука – молекулярная биология. Следовало определить структуру генов на уровне молекул и атомов, и только после этого можно в полной мере понять, как они функционируют. Продвижение вперед по этому пути задерживали ожесточенные споры о том, что собой представляет генетический материал: ДНК, белок или и то и другое. В первую половину XX в. казалось более надежным (но, как выяснилось позже, ошибочным) делать ставку на белки, молекулы которых устроены значительно сложнее нуклеиновых кислот. А ДНК отводили пассивную роль опоры для генов{53}.

Эти споры были особенно напряженными в стенах Института медицинских исследований Рокфеллера в Нью-Йорке, созданного в 1901 г. одноименным фондом на средства богатейшей нефтяной монополии Standard Oil. Этот институт, позже получивший название Университета Рокфеллера, был первым в США независимым, полностью обеспеченным финансами исследовательским центром в этой области знаний. Отец и сын Рокфеллеры сделали свое детище безусловным лидером медицинских исследований{54}. Понимая, что для крупных научных работ нужна крупная недвижимость, они в 1903 г. купили на Манхэттене за колоссальную сумму в 650 000 долларов 13 акров земли на берегу Ист-Ривер между 64-й и 68-й улицами. Институт обосновался на этом участке земли в мае 1906 г., а четыре года спустя открылась еще и больница на 60 коек, где бесплатно лечили всякого, кто страдал одним из пяти заболеваний, изучаемых в институте: полиомиелитом, ишемической болезнью сердца, сифилисом, целиакией и очень распространенной крупозной пневмонией. Со временем клинические задачи больницы расширялись. Рокфеллеры гордились тем, что снабжают «своих» ученых всеми нужными ресурсами, и надеялись, что их щедрость приведет к множеству выдающихся открытий. Стареющий нефтяной магнат говорил сыну: «У нас есть деньги, но это ценно для человечества, только если мы сумеем найти способных людей с идеями, воображением и смелостью, которые обеспечат им дельное применение»{55}.



Одним из самых продуктивных сотрудников Института Рокфеллера был медик по образованию Освальд Теодор Эвери. Он родился в городе Галифакс провинции Новая Шотландия в Канаде в семье священника. В 1887 г. Эвери переехал в Нью-Йорк и прожил там всю дальнейшую жизнь. Смолоду отличаясь чопорностью и суровым видом, он обладал недюжинными познаниями и способностями. Его яйцевидную голову венчала обширная лысина, переносицу длинного носа сжимало пенсне. Ростом он был мал, говорил негромко, держался вежливо и всегда безупречно одевался. Студенты величали его «профессор»{56} со смесью почтения и язвительности.

В медицинской практике и исследованиях Эвери центральное место занимал микроорганизм, называемый пневмококком, – бактерия Streptococcus pneumoniae, вызывающая большинство случаев внебольничной пневмонии. До изобретения антибиотиков от пневмонии умирало более сотни из каждых ста тысяч американцев ежегодно{57}. Когда был установлен возбудитель этого заболевания, предпринимались попытки получить сыворотку из лейкоцитов и других иммунокомпонентов крови больных пневмонией. Такую сыворотку вводят в кровяное русло заболевшему, и таким образом он пассивно обретает иммунную защиту. Направленность научных исследований начала меняться с 1928 г., после того как английский бактериолог и санитарный врач Фредерик Гриффит заметил, что убитые воздействием тепла болезнетворные пневмококки при добавлении к невирулентному штамму превращают его в вирулентный{58}. Дальнейшие исследования, проведенные в начале 1930-х гг. в Институте Рокфеллера и Колумбийском университете, продемонстрировали, что при смешении культур вирулентного пневмококка типа III, клетки которого покрыты полисахаридной капсулой и поэтому его колонии гладкие (штамм S[9]), и невирулентных клеток типа II, не имеющих оболочки и образующих, соответственно, шероховатые колонии (штамм R), невирулентный штамм превращался в вирулентный{59}.

Оставалось неизвестным, каков активный фактор трансформации, то есть чем передается вирулентность от одного штамма бактерий другому, и из чего он состоит. По одному из предположений, полисахаридная капсула пневмококка действует как самовоспроизводящаяся матрица. Согласно другой гипотезе, активным фактором является белково-полисахаридный антиген, находящийся внутри бактериальной клетки. В 1935 г. Эвери поставил перед собой задачу ответить на эти вопросы. Совместно с двумя более молодыми коллегами – Колином Маклаудом и Маклином Маккарти – он нашел решение. По мнению многих, их скрупулезная, точная и убедительная работа заслуживала Нобелевской премии, но, хотя с 1932 по 1948 г. этих исследователей номинировали более десяти раз, в Стокгольме это проигнорировали{60}.



Сам чем-то напоминающий монаха, Эвери холил и лелеял свой микробиологический «сад». Он много лет посвятил разработке методов выращивания, обработки и центрифугирования больших объемов культур пневмококка. По большей части работа не приносила успеха. «Разочарование – мой хлеб насущный, но я наслаждаюсь им», – часто говорил упорный исследователь. В особенно тяжелые дни он бывал более откровенен: «Часто мы готовы просто вышвырнуть все в окно»{61}. Но в конце концов удалось добиться надежных и воспроизводимых методик выделения и анализа «трансформирующей субстанции».

Словно недостаточно было множества технических трудностей, которые требовалось преодолеть в лаборатории, у Эвери началось тяжелое аутоиммунное заболевание (болезнь Грейвса), сопровождающееся гипертиреозом и проявляющееся, помимо поражения щитовидной железы, депрессией и раздражительностью, с которыми ему не всегда удавалось совладать. Пришлось удалить щитовидную железу (в 1933 или 1934 г., больничные архивы не сохранились). Хотя здоровье Эвери в значительной степени восстановилось, он часто оправдывал болезнью свое стремление свести к минимуму социальные обязательства, уклониться от участия в ученых собраниях и более полно отдаться работе{62}.

К началу 1943 г. Эвери убедился, что трансформирующей субстанцией является дезоксирибонуклеиновая кислота. В мае того года глубокой ночью он написал о своем открытии брату Рою, биохимику в Университете Вандербильта. Это письмо на четырнадцати страницах – один из эпохальных документов в истории ДНК.

Кто бы мог подумать? Насколько я знаю, этот тип нуклеиновой кислоты до сих пор у пневмококков не обнаруживали, хотя находили у других бактерий… Похоже на вирус, может быть, ген… Это касается генетики, энзимологии, клеточного метаболизма, синтеза углеводов и т. д. Сейчас нужно много документированных убедительных доказательств того, что натриевая соль дезоксирибонуклеиновой кислоты, не содержащая белков, возможно, обладает такой биологической активностью и специфическими свойствами, и эти доказательства мы пытаемся получить. Надувать пузыри очень весело, но разумнее проколоть их самому, прежде чем это попытается сделать кто-то другой… Опасно действовать сгоряча: будет стыдно, если придется идти на попятный{63}.

Статья, которую Эвери опубликовал в 1944 г., основывалась на результатах применения широкого спектра различных биохимических, микробиологических и иммунологических методов исследования, в частности электрофореза, ультрацентрифугирования, очистки и инактивации. Он установил, что трансформирующая субстанция состоит из углерода, водорода, азота, кислорода и фосфора, что характерно для нуклеиновых кислот. Субстанция была активной при разведении 1:100 000 000 и инактивировалась ферментами, расщепляющими ДНК, но на нее не влияли ферменты, воздействующие на рибонуклеиновую кислоту (РНК), белки или полисахариды. Кроме того, она поглощала свет той же длины волны, что и нуклеиновые кислоты. Методом исключения, которым пользуются врачи при диагностике, Эвери пришел к выводу: «представленные данные поддерживают предположение, что нуклеиновая кислота, содержащая дезоксирибозу, является основной составляющей трансформирующего начала Pneumococcus типа III»{64}. В 1946 г. Эвери и Маккарти опубликовали две дополнительные статьи об усовершенствовании выделения трансформирующей субстанции с еще более уверенным утверждением того, что гены состоят из ДНК{65}. Однако Эвери не выяснил механизм функционирования ДНК и ее молекулярную структуру. Как и труды Менделя и Мишера, его работа не привела к немедленному изменению научной картины.

8Дарвин Ч. Происхождение видов путем естественного отбора, или Сохранение благоприятных рас в борьбе за жизнь / Пер. А. Л. Зеликмана; под ред. А. Л. Тахтаджяна. – СПб.: Наука, 1991.
25Charles Darwin, On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life (London: John Murray, 1859), 13.
26Возможно, садов было два: меньшего размера, описанный выше, и еще один по южную сторону от ворот во внутренний двор, рядом с черным ходом. Robin Marantz Henig, The Monk in the Garden: The Lost and Found Genius of Gregor Mendel, the Father of Modern Genetics (Boston: Houghton Mifflin, 2009), 21–36.
27A. E. Crew, "Reginald Crundall Punnett 1875–1967," Biographical Memoirs of Fellows of the Royal Society 13 (1967): 309–26.
28Curriculum vitae, Gregor Mendel. Mendel Museum, Masarykova Univerzita, https://mendelmuseum.muni.cz/en/g-j-mendel/zivotopis.
29Gregor Mendel, "Versuche über Plflanzenhybriden," Verhandlungen des naturforschenden Vereines in Brünn, Bd. IV für das Jahr 1865, Abhandlungen (Experiments in Plant Hybridization. Read at the February 8 and March 8, 1865, Meetings of the Brünn Natural History Society) (1866), 3–47; William Bateson and Gregor Mendel, Mendel's Principles of Heredity: A Defense, with a Translation of Mendel's Original Papers on Hybridisation (New York: Cambridge University Press, 2009).
30Charles E. Rosenberg, "The Therapeutic Revolution: Medicine, Meaning, and Social Change in Nineteenth-Century America," in Morris J. Vogel and Charles E. Rosenberg, eds., The Therapeutic Revolution: Essays in the Social History of American Medicine (Philadelphia: University of Pennsylvania Press, 1979), 3–25.
31Gunther S. Stent, "Prematurity and Uniqueness in Scientific Discovery," Scientific American 227, no. 6 (1972): 84–93.
32Даже этот вывод был оспорен; некоторые историки утверждают, что фон Шермак не вполне понял работу Менделя, а Спиллмана зачастую не упоминают даже в скобках. См.: Augustine Brannigan, "The Reification of Mendel," Social Studies of Science 9, no. 4 (1979): 423–54; Malcolm Kottler, "Hugo De Vries and the Rediscovery of Mendel's Laws," Annals of Science 36 (1979): 517–38; Randy Moore, "The Re-Discovery of Mendel's Work," Bioscene 27, no. 2 (2001): 13–24.
33R. A. Fisher, "Has Mendel's Work Been Rediscovered?," Annals of Science 1 (1936): 115–37; Bob Montgomerie and Tim Birkhead, "A Beginner's Guide to Scientific Misconduct," ISBE Newsletter 17, no. 1 (2005): 16–21; Daniel L. Hartl and Daniel J. Fairbanks, "Mud Sticks: On the Alleged Falsification of Mendel's Data," Genetics 175 (2007): 975–79; Allan Franklin, A. W. F. Edwards, Daniel J. Fairbanks, Daniel L. Hartl, and Teddy Seidenfeld, eds., Ending the Mendel–Fisher Controversy (Pittsburgh: University of Pittsburgh Press, 2008); Gregory Radick, "Beyond the 'Mendel–Fisher Controversy,' " Science 350, no. 6257 (2015): 159–60.
34"Wilhelm His, Sr. (1831–1904), Embryologist and Anatomist," editorial, Journal of the American Medical Association 187, no. 1 (January 4, 1964): 58; Elan D. Louis and Christian Stapf, "Unraveling the Neuron Jungle: The 1879–1886 Publications by Wilhelm His on the Embryological Development of the Human Brain," Archives of Neurology 58, no. 11 (2001): 1932–35.
35Переплетение марлевой ткани отличается тем, что уточные нити расположены попарно и пересекаются до и после каждой нити основы, надежно удерживая уток на месте. Интересно, что эта структура напоминает двойную спираль. A. Klose, "Victor von Bruns und die sterile Verbandswatte," ("Victor Bruns and the Sterile Cotton Wool"), Ausstellungskatalog des Stadtsmuseums Tübinger Katalogue 77 (2007): 36–46; D. J. Haubens, Victor von Bruns (1812–1883) and his contributions to plastic and reconstructive surgery," Plastic and Reconstructive Surgery 75, no. 1 (January 1985): 120–27.
36Ralf Dahm, "Discovering DNA: Friedrich Miescher and the Early Years of Nucleic Acid Research," Human Genetics 122 (2008): 565–81; Ralf Dahm, "Friedrich Miescher and the Discovery of DNA," Developmental Biology 278, no. 2 (2005): 274–88; Ralf Dahm, "The Molecule from the Castle Kitchen," Max Planck Research, 2004, 50–55; Ulf Lagerkvist, DNA Pioneers and Their Legacy (New Haven: Yale University Press, 1998), 35–67.
37Horace W. Davenport, "Physiology, 1850–1923: The View from Michigan," Physiologist 25, suppl. 1 (1982): 1–100.
38Friedrich Miescher, "Ueber die chemische Zusammensetzung der Eiterzellen" (On the Chemical Composition of Pus Cells), Medicinisch-chemische Untersuchungen 4 (1871): 441–60; Felix Hoppe-Seyler, "Ueber die chemische Zusammensetzung des Eiter" (On the Chemical Composition of Pus), Medicinisch-chemische Untersuchungen 4 (1871): 486–501.
39S. B. Weineck, D. Koelblinger, and T. Kiesslich, "Medizinische Habilitation im deutschsprachigen Raum: Quantitative Untersuchung zu Inhalt und Ausgestaltung der Habilitationsrichtlinien" (Medical Habilitation in German-Speaking Countries: Quantitative Assessment of Content and Elaboration of Habilitation Guidelines), Der Chirurg 86, no. 4 (April 2015): 355–65; Theodor Billroth, The Medical Sciences in the German Universities: A Study in the History of Civilization (New York: Macmillan, 1924).
40Freidrich Miescher, "Die Spermatozoen einiger Wirbeltiere: Ein Beitrag zur Histochemie" (The Spermatazoa of Some Vertebrates: A Contribution to Histochemistry), Verhandlungen der naturforschenden Gesellschaft in Basel 6 (1874): 138–208; Dahm, "Discovering DNA"; Ulf Lagerkvist, DNA Pioneers and Their Legacy (New Haven: Yale University Press, 1998), 35–67.
41Dahm, "Discovering DNA," 574.
42Описание истории евгеники взято из одной из моих книг, а именно: Howard Markel, The Kelloggs: The Battling Brothers of Battle Creek (New York: Pantheon, 2017), 298–321.
43Гальтон также противопоставлял воспитание природе. Он и Чарльз Дарвин приходятся внуками английскому врачу, натуралисту, изобретателю и поэту Эразму Дарвину. См.: Francis Galton, Inquiries into Human Faculty and its Development (London: Macmillan, 1883), 17, 24–25, 44; Francis Galton, Hereditary Genius: An Inquiry into its Laws and Consequences (London: Macmillan, 1869); Francis Galton, "On Men of Science: Their Nature and Their Nurture," Proceedings of the Royal Institution of Great Britain 7 (1874): 227–36.
44Howard Markel, Quarantine: East European Jewish Immigrants and the New York City Epidemics of 1892 (Baltimore: Johns Hopkins University Press, 1997), 179–82; Howard Markel, When Germs Travel: Six Major Epidemics That Invaded America Since 1900 and the Fears They Unleashed (New York: Pantheon, 2004), 34–36; Kenneth M. Ludmerer, Genetics and American Society: A Historical Appraisal (Baltimore: Johns Hopkins University Press, 1972), 87–119.
45Государственный закон США № 68–139, принятый 68-м Конгрессом США; John Higham, Strangers in the Land: Patterns of American Nativism, 1860–1925 (New York: Atheneum, 1963), 152; Barbara M. Solomon, Ancestors and Immigrants: A Changing New England Tradition (Cambridge, MA: Harvard University Press, 1956); Markel, Quarantine, 1–12, 66–67, 75–98, 133–52, 163–78, 181–85; Markel, When Germs Travel, 9–10, 35–36, 56, 87–89, 96–97, 102–3.
46Charles E. Rosenberg, "Charles Benedict Davenport and the Irony of American Eugenics," in No Other Gods: On Science and American Social Thought (Baltimore: Johns Hopkins University, Press, 1976), 89–97; Garland E. Allen, "The Eugenics Record Office at Cold Spring Harbor, 1910–1940: An Essay in Institutional History," OSIRIS (second series) 2 (1986): 225–64; Oscar Riddle, "Biographical Memoir of Charles B. Davenport, 1866–1944," Biographical Memoirs, vol. 25 (Washington, DC: National Academy of Sciences of the United States of America, 1947).
47Джеймс Уотсон неоднократно высказывался о том, что представители черной расы генетически менее развиты интеллектуально, нежели белые. Одно из таких заявлений имело место в передаче канала PBS из цикла «Американские мастера». См.: Amy Harmon, "For James Watson, the Price Was Exile," New York Times, January 1, 2019, D1; "Decoding Watson," American Masters, PBS, January 2, 2019, http://www.pbs.org/wnet/americanmasters/american-masters-decoding-watson-full-film/10923/?button=fullepisode.
48Rosenberg, No Other Gods, 91.
49Charles B. Davenport, "Report of the Committee on Eugenics," American Breeders Magazine 1 (1910): 129.
50Письмо Ч. Давенпорта Мэдисон Грант. 7 апреля 1922 г., материалы Чарльза Давенпорта, Американское философское общество, Филадельфия. См.: Rosenberg, No Other Gods, 95–96.
  Madison Grant, The Passing of the Great Race, or The Racial Basis of European History (New York: Charles Scribner's Sons, 1916); Jacob H. Landman, Human Sterilization: The History of the Sexual Sterilization Movement (New York: Macmillan, 1932); Harry H. Laughlin, Eugenical Sterilization in the United States (Chicago: Municipal Court of Chicago, 1932); Paul Lombardo, Three Generations, No Imbeciles: Eugenics, the Supreme Court, and Buck v. Bell (Baltimore: Johns Hopkins University Press, 2010); Adam Cohen, Imbeciles: The Supreme Court, American Eugenics and the Sterilization of Carrie Buck (New York: Penguin, 2016); Daniel Kevles, In the Name of Eugenics: Genetics and the Uses of Human Heredity (New York: Knopf, 1985), 96–112. Труднее сосчитать представителей сексуальных меньшинств, инвалидов, цыган и других «неполноценных», убитых согласно идеологии гитлеровского режима. См.: U.S. Holocaust Museum, "Documenting the Numbers of Victims of the Holocaust and Nazi Persecution," https://encyclopedia.ushmm.org/content/en/article/documenting-numbers-of-victims-of-the-holocaust-and-nazi-persecution.
52Archibald Garrod, Garrod's Inborn Factors in Disease: Including an annotated facsimile reprint of The Inborn Factors in Disease (New York: Oxford University Press, 1989); Thomas Hunt Morgan, "The Theory of the Gene," American Naturalist 51 (1917): 513–44; T. H. Morgan, A. H. Sturtevant, H. J. Muller, and C. B. Bridges, The Mechanism of Mendelian Heredity, revised ed. (New York: Henry Holt, 1922); T. H. Morgan, "Sex-linked Inheritance in Drosophila," Science 32, no. 812 (1910): 120–22; T. H. Morgan and C. B. Bridges, Sex-linked Inheritance in Drosophila (Washington, DC: Carnegie Institution of Washington/Press of Gibson Brothers, 1916). Пример популяционной генетики того времени см.: Raymond Pearl, Modes of Research in Genetics (New York: Macmillan, 1915).
53Matt Ridley, Francis Crick: Discoverer of the Genetic Code (New York: Harper Perennial, 2006), 33.
54George W. Corner, A History of the Rockefeller Institute, 1901–1953: Origins and Growth (New York: Rockefeller Institute Press, 1964); E. R. Brown, Rockefeller Medicine Men: Medicine and Capitalism in America (Berkeley: University of California Press, 1979).
55Howard Markel, "The Principles and Practice of Medicine: How a Textbook, a Former Baptist Minister, and an Oil Tycoon Shaped the Modern American Medical and Public Health Industrial–Research Complex," Journal of the American Medical Association 299, no. 10 (2008): 1199–201; Ron Chernow, Titan: The Life of John D. Rockefeller (New York: Random House, 1998), 470–79.
56René Dubos, The Professor, the Institute and DNA (New York: Rockefeller University Press, 1976), 10, 161–79.
57Robert D. Grove and Alice M. Hetzel, Vital Statistics in the United States, 1940–1960, U.S. Department of Health, Education and Welfare, Public Health Service, National Center for Health Statistics (Washington, DC: Government Printing Office, 1968), 92.
58Frederick Griffith, "The Significance of Pneumococcal Types," Journal of Hygiene 27, no. 2 (1928): 113–59.
9S – от английского слова smooth («гладкий»), R – от rough («шероховатый»). – Прим. ред.
59M. H. Dawson, "The transformation of pneumococcal types. I. The Conversion of R forms of Pneumococcus into S forms of the homologous type," Journal of Experimental Medicine 51, no. 1 (1930): 99–122; M. H. Dawson, "The Transformation of Pneumococcal Types. II. The interconvertibility of type-specific S pneumococci," Journal of Experimental Medicine 51, no. 1 (1930): 123–47; M. H. Dawson and R. H. Sia, "In vitro transformation of Pneumococcal types. I. A technique for inducing transformation of Pneumococcal types in vitro," Journal of Experimental Medicine 54, no. 5 (1931): 681–99; M. H. Dawson and R. H. Sia, "In vitro transformation of Pneumococcal types. II. The nature of the factor responsible for the transformation of Pneumococcal types," Journal of Experimental Medicine 54, no. 5 (1931): 701–10; J. L. Alloway, "The transformation in vitro of R Pneumococci into S forms of different specific types by the use of filtered Pneumococcus extracts," Journal of Experimental Medicine 55 No. 1 (1932): 91–99; J. L. Alloway, "Further observations on the use of Pneumococcus extracts in effecting transformation of type in vitro," Journal of Experimental Medicine 57, no. 2 (1933): 265–78.
  Эвери выдвигали на Нобелевскую премию тринадцать раз: в 1932, 1933, 1934, 1935, 1936, 1937, 1938, 1939, 1942, 1945, 1946, 1947 и 1948 гг., но безрезультатно. См.: "List of Individuals Proposing Oswald Avery and others for the Nobel Prize (1932–1948)," Oswald Avery Collection, Profiles in Science, U.S. National Library of Medicine, https://profiles.nlm.nih.gov/ps/access/CCAAFV.pdf#xml=https://profiles.nlm.nih.gov:443/pdfhighlight?uid=CCAAFV&query=%28Nobel%2C%20Avery%29.
61Dubos, The Professor, the Institute and DNA, 139.
62Dubos, The Professor, the Institute and DNA, 66; Matthew Cobb, "Oswald Avery, DNA, and the Transformation of Biology," Current Biology 24, no. 2 (2014): R55– R60; Maclyn McCarty, The Transforming Principle: Discovering that Genes Are Made of DNA (New York: Norton, 1985); Maclyn McCarty, "Discovering Genes are Made of DNA," Nature 421 (2003): 406; Horace Freeland Judson, "Reflections on the Historiography of Molecular Biology," Minerva 18, no. 3 (1980): 369–421; Alan Kay, "Oswald T. Avery," in Charles C. Gillespie, ed., Dictionary of Scientific Biography, vol. 1 (New York: Scribner's, 1970); Charles L. Vigue, "Oswald Avery and DNA," American Biology Teacher 46, no. 4 (1984): 207–11; Nicholas Russell, "Oswald Avery and the Origin of Molecular Biology," British Journal for the History of Science 21, no. 4 (1988): 393–400; M. F. Perutz, "Co-Chairman's Remarks: Before the Double Helix," Gene 135 (1993): 9–13.
  Это письмо цитирует Рене Дюбо в книге: René Dubos, The Professor, the Institute and DNA, 217–20. Оригинал письма Освальда Эвери к Рою Эвери, датированного 26 мая 1943 г., находится в материалах Освальда Эвери в Библиотеке и архиве шт. Теннесси (Нэшвилл), а также доступен онлайн: Oswald Avery Collection, Profiles in Science, U.S. National Library of Medicine, https://profiles.nlm.nih.gov/ps/retrieve/ResourceMetadata/CCBDBF.
64O. T. Avery, C. M. Macleod, and M. McCarty, "Studies on the chemical nature of the substance inducing transformation of pneumococcal types: Induction of transformation by a desoxyribonucleic acid fraction isolated from Pneumococcus Type II," Journal of Experimental Medicine 79, no. 2 (1944): 137–58.
65M. McCarty and O. T. Avery, "Studies on the chemical nature of the substance inducing transformation of pneumococcal types. II. Effect of desoxyribosenucleic on the biological activity of the transforming substance," Journal of Experimental Medicine 83, no. 2 (1946): 89–96; M. McCarty and O. T. Avery, "Studies on the chemical nature of the substance inducing transformation of pneumococcal types. III. An improved method for the isolation of the transforming substance and its application to Рneumococcus types II, III, and VI," Journal of Experimental Medicine 83, no. 2 (1946): 97–104.
1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28 
Рейтинг@Mail.ru