– Поднимите руку, если вы собираетесь заводить ребенка не раньше, чем через 10 лет, – говорю я огромной аудитории миллениалов, которые собрались в шикарном конференц-зале в Вашингтоне. Примерно половина зала поднимает руку.
Вот уже 45 минут я поэтично расписываю то, как грядущая генетическая революция изменит способ зачатия и саму природу зарождающейся жизни. Я уже объяснил, почему считаю неизбежным тот факт, что наш вид с радостью примет генетически улучшенное будущее, и почему это событие одновременно захватывающее и пугающее. Обсудили мы и то, что, на мой взгляд, необходимо сделать уже сейчас, чтобы повысить эффективность революционных технологий и минимизировать вред.
– Если вы подняли руку и ваш пол – женский, то вам следует заморозить яйцеклетки. Если вы подняли руку и ваш пол – мужской, то настоятельно советую заморозить сперму как можно скорее.
Аудитория смотрит на меня с подозрением.
– Не важно, насколько вы молоды и фертильны, – продолжаю я, – существует определенная вероятность того, что зачатие своего ребенка вы совершите в лаборатории. Так почему бы не заморозить свой биоматериал, пока вы на пике?
По лицам этих амбициозных молодых специалистов проходит волна возмущения. Я уже чувствую, как назревает конфликт. Десятилетиями я задавался тем же вопросом, что и они: как отыскать баланс между изумительным чудом и грубой жестокостью нашей биологии?
Мы все рождаемся в ходе процесса, соизмеримого с настоящим чудом, а затем сразу же приступаем к непрерывной и заведомо проигрышной войне со временем, болезнями и силами природы. Нас привлекает все естественное, но нашему виду свойственны бесконечные попытки укротить природу. Мы хотим, чтобы дети от природы рождались здоровыми, но нет предела тому, как далеко родители зайдут в борьбе с природой, чтобы излечить ребенка от болезни.
Молодая девушка в синем брючном костюме поднимает руку.
– Вы только что объяснили, в каком направлении, по вашему мнению, движется генетическая революция, и как нам следует к ней готовиться. А что насчет вас? Будете ли вы генетически изменять своих детей?
Я впал в ступор от неожиданности. Я так долго пишу и рассказываю людям о будущем репродукции человека, но почему-то никто ни разу не задал мне этого вопроса.
У меня не было четкого ответа на вопрос этой девушки, поэтому я перевел взгляд вверх, призадумавшись.
Наука о человеческой генетике так быстро продвинулась вперед, что все мы до сих пор пытаемся ее догнать. В 1953 году, когда Джеймс Уотсон, Фрэнсис Крик, Розалинд Франклин и Морис Уилкинс открыли двойную спираль ДНК, они показали, что инструкция к нашей жизни по форме своей похожа на винтовую лестницу. Понимание процедуры секвенирования генов четверть века спустя доказало, что эту инструкцию можно прочесть и, что куда важнее, понять. А разработка инструментов для точного редактирования генома несколькими десятилетиями позже позволила ученым написать и перезаписать код жизни. Читабельный, переписываемый, взламываемый – научные достижения последней половины столетия превратили биологию в еще одну разновидность информационных технологий, а люди, которые считались существами, неподдающимися расшифровке, стали биологическими носителями программного обеспечения с исходным кодом.
Интерпретация генетики с точки зрения информационных технологий позволила нам увидеть генетические вариации и мутации, приводящие к ужасным болезням и страданиям, которые, с одной стороны, являются необходимой платой за эволюционное разнообразие, а с другой – раздражающим сбоем в работе компьютерной программы. Продолжу метафору: разве кто-то откажется получить все доступные обновления, позволяющие системе работать без сбоев?
Ход моих мыслей замедляется. Взгляд снова сосредоточен.
– При уверенности в том, что это безопасно и я смогу уберечь ребенка от ужасных страданий, – продолжил я, прохаживаясь по сцене, – я бы пошел на это. Если бы я по-настоящему верил, что помогу моему ребенку прожить более долгую, здоровую и счастливую жизнь, то я бы согласился. А если бы стоял вопрос, наделить ли мне своего ребенка особыми возможностями, которые позволили бы ему добиться успеха в мире, полном конкуренции из таких же обладателей улучшенных возможностей, то я бы как минимум серьезно это обдумал. А как бы поступили вы?
Девушка качнулась на стуле.
– Сложно сказать. Я понимаю вашу точку зрения. Но что-то в этом всем кажется противоестественным, – отвечает она.
– Позвольте немного уточнить, – говорю я в ответ. – Что вы подразумеваете под естественностью?
– Наверное, все в первозданном виде… до того, как было изменено человеком.
– А сельское хозяйство – это естественно? – спрашиваю я. – Мы занимаемся им не более 12 000 лет.
– И да, и нет, – осторожно отвечает девушка. Она начинает понимать, что естественность – это весьма размытое и двусмысленное понятие.
– А насколько естественна органическая кукуруза? Вернитесь на 9000 лет назад, и вы не найдете ничего, хотя бы отдаленно похожего на современную кукурузу. Вам встретится дикорастущая трава под названием теосинте с несколькими свисающими с нее вялыми початками. Добавьте сюда тысячелетие активных изменений со стороны человека, и вы получите прекрасного желтого великана, украшающего наши столы на пикниках. Большая часть потребляемых нами фруктов и овощей, даже самых органических, из Whole Foods, появилась в результате нашей тысячелетней целенаправленной селекции. Так являются ли они естественными?
– Это двоякая ситуация, – согласилась девушка, не желая расставаться со своей первоначальной концепцией о естественности.
– Может, для нас естественнее жить обществом охотников и собирателей, как наши предки?
– Возможно.
Я не хотел больше давить на нее, но мне нужно было донести свою главную мысль.
– Вы бы хотели так жить?
Озорная улыбка отразилась на ее лице.
– А обслуживание в номерах включено?
– Итак, вы в отеле Four Seasons и получаете ужасную бактериальную инфекцию, – продолжаю я. – Что вы выберете: чтобы вас лечили, как десятки тысяч лет назад, с помощью обрядов и ягод или антибиотики, которые могут спасти вашу жизнь?
– Я за антибиотики, – отвечает девушка.
– Они естественны?
– Я поняла вас.
Я окинул взглядом зал.
– У всех нас есть укоренившиеся представления о том, что считать естественным. Хотя на деле большая часть таковым и не является. Может, некоторые вещи мы знаем из недавнего прошлого, но человечество тысячи лет агрессивно меняло окружающий мир. Однако, если мы так долго пытались изменить различные системы, включая биологическую, можно ли считать биологию, унаследованную от родителей, нашей судьбой? Есть ли у нас право или даже обязанность устранять сбои и ошибки в программном коде нашего тела и тел наших детей?
Слушатели забеспокоились.
– Представьте, что у вашего будущего ребенка страшная болезнь. Вы знаете, что от нее умирают. Поднимите руки те из вас, кто готов отправить ребенка на операцию, чтобы спасти его жизнь? – продолжаю я.
Руки подняли все.
– А если бы можно было предотвратить возникновение болезни, то вы бы на это пошли?
Никто не опустил руку.
– Не опускайте руку, если бы вы прибегли к ЭКО и эмбриональному скринингу, чтобы убедиться в безопасности будущего ребенка.
Руки все еще подняты.
– А как насчет одного генетического изменения, пока эмбрион еще не был имплантирован в тело матери?
Несколько рук опустились.
Я повернулся к молодому человеку, который опустил руку. Это был стильно одетый парень 20 с небольшим лет, будто сошедший с обложки каталога L.L. Bean.
– Можете объяснить почему?
– Кто мы такие, чтобы программировать собственных детей? – говорит он. – Это скользкая дорожка. Если мы начнем, как мы поймем, когда нужно остановиться? В итоге мы можем закончить Франкенштейнами. Такая перспектива меня пугает.
– Сильный аргумент, – говорю я. – Вы и должны пугаться этой перспективы. Если вы не ощущаете смесь страха и возбуждения, значит, не до конца во всем разобрались. Генетические технологии позволят нам создавать удивительные вещи, которые облегчат человеческие страдания и создадут возможности, о которых мы не смели даже мечтать. С помощью этих возможностей новые версии нас, Homo sapiens 2.0 и выше, научатся изобретать новые технологии, изучать другие миры, создавать выдающиеся произведения искусства и испытывать более широкий спектр эмоций. Но если мы где-то ошибемся, то эти же технологии могут разобщить общество, создать дискриминационную иерархию между обычными и модернизированными людьми, отрицательно сказаться на разнообразии, подвести нас к обесцениванию и товаризации человеческой жизни. И даже стать причиной серьезных национальных и международных конфликтов.
– А кто решает, к чему все идет? – спрашивает у меня другая девушка.
– Это – самый важный и животрепещущий вопрос, который мы – отдельные индивиды и целые группы – будем задавать себе многие годы, – осторожно продолжаю я. – Наш ответ определит, кто мы и что мы за люди, где мы живем и можем жить, какие открываются возможности для нас, как отдельных людей и целого вида.
Слушатели в аудитории заерзали на стульях. Я буквально чувствовал, как уровень напряжения в зале стремительно растет.
– Именно нам предстоит разобраться, что с этим делать. Поэтому сегодня я обращаюсь к вам. В течение следующих нескольких лет наш вид в целом будет принимать фундаментальные решения о будущем генетики. Какие-то решения, как, например, издание законов, будут приниматься на социальном уровне. Однако многие важнейшие решения будут зависеть от отдельных индивидов. Например, каждый из нас волен решать, как именно зачать ребенка. Каждый индивид и пара по отдельности не почувствуют, будто определяют будущее человечества. Но наше общее решение отразится на нашем будущем.
Уже привычная мне смесь страха, изумления и непонимания озаряет лица присутствующих.
Затем, как всегда, в воздух взмывают поднятые руки.
Сегодняшние слушатели начинают осознавать и ощущать гигантскую ответственность, возложенную на нас этим историческим моментом. Так же, как ее ощущали и участники всех моих конференций: и семиклассники, с которыми я общался в Нью-Джерси, и крупные игроки с интеллектуальных конференций Google Zeitgeist, Tech Open Air и South by Southwest, и эксперты из Expotential Medicine и Нью-Йоркской академии наук, и студенты юридических факультетов Стэнфорда и Гарварда, и ученые, студенты и бизнес-элита со всего мира.
Это ответственность, которая приходит в переломный момент истории нашего вида, когда биология и технологии переплетаются, как никогда раньше, и радикально меняют самые священные догмы и традиции. Эти миллениалы из Вашингтона, как и все слушатели до них, начинают осознавать, что будущее генетических модификаций человека сводится не только к изменению какой-то части генов и у себя, и потомков, но и к созданию совершенно нового будущего для нашего вида.
Чтобы понять, куда идти дальше, необходимо сделать шаг назад и разобраться с тем, откуда мы пришли.
На протяжении первых 2,5 миллиарда лет жизни на Земле наши одноклеточные предки размножались «клонированием». Например, одна бактерия делилась на две отдельные бактерии с одинаковым набором генов, а затем процесс повторялся. Это был отличный способ репродукции, поскольку вам не нужно было тратить время и энергию на поиски партнера. Все, что от вас требовалось, – найти еду и разделиться, и ваш род продолжался. Отрицательной стороной клонирования являлось то, что такое размножение приводило к генетическому однообразию в сообществе одноклеточных организмов и ограничивало естественный отбор.[3]
Стоит сказать, что однообразие было непостоянным. Бактерии развились таким образом, что могли буквально захватывать чужие гены с помощью микроскопических гарпунов, которые называются ворсинками, или пили[4]. Несмотря на то что клонирование помогало бактериям передавать полезные мутации, оно также бывало опасным для колоний (например, при появлении поражающих бактерии вирусов), поскольку клонированные особи сохраняли слишком много одинаковых дефектов в защитных механизмах. Многое изменилось с появлением полового размножения.
Точные копии в биологии почти всегда несовершенны. Мы не можем указать точное время, однако палеонтологические ископаемые показывают, что около 1,2 миллиарда лет назад какой-то один из простейших организмов развил странную мутацию. Вместо того чтобы скопировать самого себя или получить несколько генов из других микроорганизмов, такие особи спарились с другими микробами, и их потомство получило ДНК обоих родителей. Тогда и возникло половое размножение, которое невероятным образом расширило эволюционные возможности видов.
Для поиска партнера требовалось больше энергии, чем для клонирования себя. А сами потенциальные партнеры отсутствовали по определению. Искатели «второй половинки» должны были развить в себе новые, усовершенствованные способности для привлечения наиболее перспективных вариантов и конкурирования с соперниками. Но когда партнер находился, обе особи могли смешивать свои гены более полноценно и произвольно, что давало им огромное преимущество.
У организмов с половым размножением было больше генетических дефектов, чем у их клонирующихся собратьев. Зато возрастали и возможности для создания генетических преимуществ. Благодаря тому, что постоянно появлялись новые организмы с различными моделями полового размножения, оно позволяло видам быстрее адаптироваться к изменяющимся обстоятельствам, лучше справляться с защитой от хищников и добычей пропитания, а также ускорять процесс эволюционных изменений. Вся наша эволюционная история состоит из таких зачастую случайных генетических мутаций и вариаций, породивших множество новых признаков, самые полезные из которых распространились внутри вида. Вооружившись генетическими различиями, наши предки конкурировали друг с другом и с окружающей средой в процессе, который Дарвин назвал естественным отбором.
Со временем сам процесс полового размножения столкнулся с эволюционным давлением, на которое живые существа отреагировали по-разному. Некоторые, например современный лосось, начинали откладывать как можно больше икры – в надежде, что какие-то икринки успеют оплодотвориться. Откладывание тысяч икринок в ямки на дне рек повышало шансы, что хоть какие-то из них успеет оплодотворить самец. Однако этот способ размножения не предусматривает родительской заботы о потомстве.
Чтобы вы ни думали о своих родителях, сама возможность заботы о потомстве является очень важным эволюционным преимуществом. Другие особи (в том числе наши более современные предки) предпочитали не откладывать икру наружу, а до оплодотворения хранить яйца внутри женского организма. Сами эмбрионы вынашивались внутри самок. Если представить половое размножение в виде игры в казино, то особи, похожие на лосося, ставили бы фишки на каждую цифру, а существа, подобные нам, выбирали бы несколько одинаковых чисел. Производя меньше потомков, чем другие млекопитающие, и удерживая их рядом с домом, наши предки активно содействовали взрослению новых поколений. Это означало, что наши дети развивали навыки, недоступные для малька лосося, который вылуплялся из икринки и сразу был предоставлен самому себе.
Половое размножение активно способствовало разнообразию, создавая плацдарм для непрерывной эволюционной гонки. Когда в этой гонке побеждал лосось, он мог активно размножаться, производя потомство в большом количестве. В то же время лосось никак не участвовал в заботе о детях, поскольку его отпрыски быстро разбегались. Мы же, наоборот, защищали свое уязвимое потомство сразу после рождения, позволяя растущему мозгу развиваться, и ухаживали за детьми, обучая их новым навыкам. Способность к уходу за потомством была заложена в нашей природе эволюционно. Побеждая в этой гонке, мы смогли создать цивилизацию.
«Встроенный» половой инстинкт гарантировал, что наши предки продолжали размножаться, даже не до конца понимая, что происходит, – как минимум на техническом уровне. Древние цивилизации приписывали магию деторождения богам, но наши пытливые умы были настроены на то, чтобы еще глубже понять мир вокруг. На протяжении тысячи лет прогресс в изучении биологии шел очень медленно. Но затем с развитием философии и инструментов научной революции наши знания стали стремительно углубляться.
В 1677 году окрыленный голландец Антони ван Левенгук вспорхнул с постели. Изобретатель микроскопа, на порядок превосходившего прежние, уже самостоятельно изучил телесные жидкости: кровь, слюну и слезы. В этот раз он решил привлечь к эксперименту жену. После полового акта Левенгук поместил часть своего эякулята под микроскоп и в удивлении увидел, как «семенные зверьки» извивались, «будто угри, плавающие в воде»[5]. Но какую же роль, гадал ученый, выполняли эти изворотливые зверьки?
По бытовавшему тогда убеждению, которое дошло до Европы от древних греков, в мужском семени содержались гомункулы – маленькие человечки, которые ждали момента для того, чтобы начать расти. Согласно этой гипотезе, женское тело подобно почве, в которой прорастают семена. По другой теории, в женской яйцеклетке живет мини-копия человека, а мужская сперма стимулирует ее рост. Третья группа, состоящая в основном из малообразованной прослойки населения, полагала, будто жизнь зарождается спонтанно – как мухи, появляющиеся в тухлом мясе.
В XVIII веке выдающийся католический священник из Италии Ладзаро Великолепный Спалланцани, чтобы проверить свою гипотезу о размножении, провел гениальный эксперимент. Он сшил из тафты крошечные лягушачьи трусы, которые не позволяли самцам лягушек передавать свои «жидкости». Сегодня каждый подросток узнает это на уроках полового воспитания, однако в XVIII веке новость о том, что самки лягушек не могут забеременеть, если мужская сперма задерживается в трусах, стала настоящей сенсацией. Когда Спалланцани искусственно осеменил самок лягушек спермой самцов, те смогли забеременеть. Теперь стало понятно, что в сперме содержится необходимый компонент, который нужен, чтобы женские особи могли завести потомство[6]. Великолепно! Ученым понадобилось еще 100 лет, чтобы догадаться, что в оплодотворение мужские и женские половые клетки вносят одинаковый вклад.
Новые знания о процессе зачатия и деторождения соединились с интуитивным, но не до конца понятым осознанием наших предков – наукой о наследовании.
Тысячу лет наши предки пытались понять, как работает наследственность. Каждый раз, когда у высокого мужчины и высокой женщины рождался высокий ребенок, они получали подсказку. Если же у высокого мужчины и высокой женщины рождался низкорослый ребенок, ученые, должно быть, удивлялись. Да и мужчина, скорее всего, недоверчиво косился в сторону шустрого и низкорослого Казановы из соседней пещеры. Наши предки использовали эти ограниченные знания о наследственности, чтобы изменять окружающий мир.
Например, кочующие охотники-собиратели стали замечать, что некоторые волки, копающиеся в мусоре, были дружелюбнее своих сородичей. И примерно 15 000 лет назад где-то на просторах Центральной Азии кочевники начали сводить этих дружелюбных волков между собой. В результате появились собаки. Нетронутая человеком природа вряд ли бы смогла своими силами превратить гордого волка в чихуахуа. Но наши предки поспособствовали созданию совершенно нового подвида.
Аналогичным образом люди одомашнивали и растения. После отступления ледников около 12 000 лет назад наши предки взялись за выращивание самых полезных растений, которые находили в природе[7]. Задолго до того, как Monsanto начала генетически модифицировать семена, наши предки заметили, что одни растения качественно отличались от других и несли больше желаемых признаков. Древние люди заметили: если они выращивали семена от таких растений, в следующем поколении чаще присутствовал желаемый признак. Все следующее тысячелетие это селекционное разведение использовали, чтобы превратить дикорастущие культуры в то, что сегодня мы знаем как пшеницу, ячмень и горох с Ближнего Востока, рис и просо из Китая, а также тыкву и кукурузу из Мексики. А поскольку люди по всему миру сами замечали эффект от одомашнивания и селекции растений и животных либо узнавали об этом от других, мы все больше интересовались природой наследственности.
Наши предки знали, как получить наследуемые признаки, но мало разбирались в механике этого процесса. Веками многие великие мыслители, включая Гиппократа и Аристотеля в Древней Греции, Чараку в Индии, Абу аль-Касима аз-Захрави и Иегуды Галеви из исламской Испании, выдвигали гипотезы о человеческой наследственности, но никто так и не понял процесса.
В 1831 году английский исследователь с незаурядной любознательностью отправился в пятилетнюю исследовательскую экспедицию по берегам Африки, Южной Америки, Австралии и Новой Зеландии. Увлеченный наблюдатель Чарльз Дарвин тщательно изучал окружающую среду. В ходе экспедиции он собрал огромную коллекцию образцов и сохранил подробные записи. Вернувшись в Англию в 1836 году, ученый провел следующие 23 года, одержимо изучая свои находки и обдумывая всем известную гипотезу о развитии организмов. Дарвин понимал, что его теория пошатнет христианские догматы, поэтому хотел убедиться в своей правоте до публикации работ. В 1859 году Дарвин наконец-то публикует книгу «Происхождение видов путем естественного отбора», узнав, что его конкурент с удивительно схожими идеями решил поделиться ими с общественностью.
В этом гениальном шедевре Дарвин описывает свою теорию о том что все формы жизни связаны, а различные виды появляются благодаря небольшим изменениям в наследуемых признаках в ходе процесса, который он назвал естественным отбором. Виды, наделенные признаками, которые дают преимущества в конкретной среде, со временем процветают и размножаются активнее, чем их сородичи с менее полезными признаками. Изменение среды в ходе нескончаемого процесса адаптации и эволюции отбора оказывает разное давление на разные признаки. Самый благоприятный признак в одной среде может стать уязвимостью в другой – и наоборот. Дарвин безупречно изложил свою теорию эволюции, однако мало знал о работе наследственности на молекулярном уровне. Разгадать эту тайну смог другой гений.
К моменту, когда Дарвин опубликовал свою величайшую работу, монах-августинец Грегор Мендель весь свой аналитический ум, свободное время и умение скрупулезно вести записи приложил к тому, чтобы понять, как именно признаки передавались между поколениями.
В 1843 году выдающийся сын крестьянина Мендель поступил в Августинский монастырь св. Фомы в Брно (ныне Чешская Республика). Он сразу же проявил активный интерес к работе других монахов, которые пытались понять механизм передачи признаков у овец. Оценив способности Менделя, настоятель отправил молодого Грегора изучать физику, химию и зоологию в Венский университет. Вернувшись из университета, Мендель убедил аббата предоставить ему свободу действий для проведения еще более амбициозных экспериментов. В период с 1856 по 1863 год Мендель вырастил свыше 10 000 растений гороха 22 различных сортов и тщательно записал, как различные признаки передавались от родительских особей потомству, выводя законы наследственности, которые не потеряли своей актуальности и в наши дни.
Во-первых, как проследил Мендель, каждый наследуемый признак определяется парой генов, по одному от каждого родителя. Во-вторых, каждый признак формируется при объединении двух генов этого признака и независимо от других признаков. В-третьих, если в генной паре присутствует два разных гена одного и того же признака, то одна из форм всегда будет доминантной. Эти революционные открытия Мендель опубликовал в своей выдающейся работе 1866 года «Опыты над растительными гибридами», а затем… тишина. Работу Менделя, которую изначально опубликовали в мало читаемом журнале Proceedings of the Natural History Society of Brünn, заметили лишь немногие ученые. Таким образом, выдающиеся труды Менделя остались без внимания.
Но когда другие ученые, изучавшие природу наследственности в 1900 году, наткнулись на потрепанные копии удивительных открытий Менделя, семя генетики нашло новую почву. Десятью годами позже американский биолог Томас Хант Морган доказал, что гены, описанные Менделем, объединяются в структуры молекул под названием хромосомы. В течение следующих десятилетий ученые показали принципы работы генетики у разных организмов. Менделевская генетика стала фундаментом, лежащим в основе всей жизни. В сочетании с дарвиновской эволюцией она подарила нам ключи, нужные для расшифровки и дальнейшего изменения всей биологии, включая нашу собственную.
Весь генетический код состоит из очень длинных цепей дезоксирибонуклеиновой кислоты (ДНК), в которой зашифрованы клеточные инструкции для производства белков. У всех видов с половым размножением (включая нас) есть две цепочки ДНК в ядрах почти всех клеток (кроме эритроцитов, у которых нет ядра) – по одной от матери и отца. Если бы мы были пирогом, то каждый из наших родителей вкладывался бы вполовину в каждый ингредиент.
Но наша ДНК состоит не из муки, сахара или пищевой соды, а из четырех типов молекул под названием нуклеотиды. Эти нуклеотидные основы называются гуанин, аденин, тимин и цитозин. Однако чаще всего их записывают по первым буквам: Г, А, Т или Ц. Пары Т и А, Г и Ц связываются вместе, подобно поездам, идущим по параллельным путям и едва касающимся друг друга. Порядок поездов, или последовательность ДНК, которую мы называем генами, создает уникальный набор инструкций для производства белков. Эти инструкции доставляются в клетки через особого проводника – рибонуклеиновую кислоту (РНК). Белки – настоящие клеточные «актеры», способные сыграть нужную роль: превратиться в определенный тип клетки, формировать структуру и регулировать работу органов и тканей, вызывать химические реакции или даже расти.
Обычно наши человеческие гены упакованы в 23 пары ДНК-цепочек внутри клеток – хромосомы, а каждая хромосома отвечает за определенный набор функций в организме. Внутри людей сокрыта примерно 21 000 генов и 3,2 миллиарда пар оснований – участков генома, создающих полный набор генов в организме. В каждой паре оснований Г соединяется с Ц, а Т – с А.
Ключевые гены в нашем организме, как правило, предоставляют клеткам инструкции для производства белков. Но около 99 % всей ДНК в кодировании белка не участвует никак. Такие гены раньше назывались мусорной ДНК ведь, по мнению ученых, они не выполняли значимых биологических функций. Сегодня же их можно считать игроками на скамейке запасных, которые подбадривают, подсказывают и направляют свою команду на поле. Эти некодирующие гены играют важную роль, управляя созданием определенных РНК-молекул, которые передают инструкции от генов к клеточному ядру и регулируют экспрессию генов, кодирующих белки.
Каждая наша клетка, обладающая ядром, содержит чертеж всего нашего тела. Но если бы каждая клетка пыталась создавать всего человека, результат оказался бы плачевным. Вместо этого нашу генетическую ДНК регулирует особый процесс – эпигенетика которая определяет, какие именно гены экспрессируются. Например, в клетках кожи можно найти схему строения клеток печени и других типов, однако эпигенетические отметки заставляют такие клетки создавать именно кожу. Возвращаясь к аллегории с футболом, каждый игрок знает план игры, но выполняет только свою определенную роль – по команде[8].
Именно поэтому одна клетка нашей оплодотворенной яйцеклетки может развиться в столь сложное существо, как человек. В этой единственной клетке содержатся инструкции для создания клеток любого типа. Однако сами клетки постепенно дифференцируются и начинают выполнять свои собственные функции. Такие специализированные клетки не являются обособленными частицам. Это, скорее, четко выраженные составляющие во взаимосвязанной клеточной экосистеме. И точно так же, как наши органы взаимодействуют в нашем теле, гены влияют друг на друга внутри динамической системы нашего генома.
Все это кажется на редкость сложным. Так оно и есть. Поэтому нам потребовались сотни лет, чтобы понять, как работают системы, и до сих пор мы не дошли до половины. Но рецепт и понимание инструкций с природой ингредиентов критически необходимы, чтобы начать готовить пирог. Хотя ученые поняли, что гены – это алфавит жизни, им еще предстояло разобраться, что означала каждая буква, чтобы иметь возможность прочесть эту книгу.
Двойная спираль ДНК оказалась руководством из букв. Но что эти буквы гласили?
Полноценная расшифровка генома человека оказалась чрезвычайно сложной для людей задачей. К счастью, на помощь пришла техника. В середине 1970-х годов ученые из Кембриджа Фредерик Сенгер и Алан Коулсон придумали гениальный способ: нужно провести электрический ток через гель, чтобы разрушить геном клетки, окрасить фрагменты генома и рассортировать разные нуклеотиды по длине. Затем этот гель пропускали через специально разработанную камеру, чтобы считать генетические структуры. Этот ранний процесс секвенирования генома был медленным и затратным. Однако он стал огромным скачком вперед.
Поняв, как автоматизировать этот процесс и улучшить считывание световых вспышек, проходящих по «буквам» ДНК, исследователи Ли Худ и Ллойд Смит смогли увеличить скорость и эффективность секвенирования, а также заложить основу для еще одного шага вперед. В 1988 году Национальный институт здравоохранения США запустил глобальную кампанию по активной разработке следующего поколения машин, секвенирующих ДНК, и она стала плацдармом для еще более амбициозных кампаний по расшифровке всего генома[9].
Проект «Геном человека» – амбициозная попытка мировых ученых под руководством США секвенировать и создать карту первого генома человека – обошелся в 2,7 миллиарда долларов и длился целых 13 лет, его завершили в 2003 году. К этому времени частная компания, возглавляемая ученым и предпринимателем Крейгом Вентером, придумала альтернативный способ секвенирования генома – не столь масштабный, но более быстрый, чем правительственный вариант. Обе этих программы стали колоссальным скачком для человечества, и дальнейшее развитие не прекращалось. Появление таких компаний, как Illumina в Сан-Диего или BGI-Shenzhen в Китае, превратило секвенирование генома в конкурирующую, быстро развивающуюся и многомиллиардную глобальную индустрию. Следующее поколение нанопоровых секвенаторов, которые под действием тока пропускают ДНК через крошечные отверстия в белках и считывают с них содержимое, как с телеграфной ленты, может стать еще большим революционным прорывом[10].