bannerbannerbanner
полная версияCoral Reefs

Чарльз Дарвин
Coral Reefs

Полная версия

Dr. Davy describes the northern province of CEYLON ("Travels in Ceylon," page 13. This madreporitic formation is mentioned by M. Cordier in his report to the Institute (May 4th, 1839), on the voyage of the "Chevrette", as one of immense extent, and belonging to the latest tertiary period.) as being very low, and consisting of a limestone with shells and corals of very recent origin; he adds, that it does not admit of a doubt that the sea has retired from this district even within the memory of man. There is also some reason for believing that the western shores of India, north of Ceylon, have been upraised within the recent period. (Dr. Benza, in his "Journey through the N. Circars" (the "Madras Lit. and Scient. Journ." volume v.) has described a formation with recent fresh-water and marine shells, occurring at the distance of three or four miles from the present shore. Dr. Benza, in conversation with me, attributed their position to a rise of the land. Dr. Malcolmson, however (and there cannot be a higher authority on the geology of India) informs me that he suspects that these beds may have been formed by the mere action of the waves and currents accumulating sediment. From analogy I should much incline to Dr. Benza's opinion.) MAURITIUS has certainly been upraised within the recent period, as I have stated in the chapter on fringing-reefs. The northern extremity of MADAGASCAR is described by Captain Owen (Owen's "Africa," volume ii., page 37, for Madagascar; and for S. Africa, volume i., pages 412 and 426. Lieutenant Boteler's narrative contains fuller particulars regarding the coral-rock, volume i., page 174, and volume ii., pages 41 and 54. See also Ruschenberger's "Voyage round the World," volume i., page 60.) as formed of madreporitic rock, as likewise are the shores and outlying islands along an immense space of EASTERN AFRICA, from a little north of the equator for nine hundred miles southward. Nothing can be more vague than the expression "madreporitic rock;" but at the same time it is, I think, scarcely possible to look at the chart of the linear islets, which rise to a greater height than can be accounted for by the growth of coral, in front of the coast, from the equator to 2 deg S., without feeling convinced that a line of fringing-reefs has been elevated at a period so recent, that no great changes have since taken place on the surface of this part of the globe. Some, also, of the higher islands of madreporitic rock on this coast, for instance Pemba, have very singular forms, which seem to show the combined effect of the growth of coral round submerged banks, and their subsequent upheaval. Dr. Allan informs me that he never observed any elevated organic remains on the SEYCHELLES, which come under our fringed class.

The nature of the formations round the shores of the RED SEA, as described by several authors, shows that the whole of this large area has been elevated within a very recent tertiary epoch. A part of this space in the appended map, is coloured blue, indicating the presence of barrier-reefs: on which circumstance I shall presently make some remarks. Ruppell (Ruppell, "Reise in Abyssinien," Band i., s. 141.) states that the tertiary formation, of which he has examined the organic remains, forms a fringe along the shores with a uniform height of from thirty and forty feet from the mouth of the Gulf of Suez to about latitude 26 deg; but that south of 26 deg, the beds attain only the height of from twelve to fifteen feet. This, however, can hardly be quite accurate; although possibly there may be a decrease in the elevation of the shores in the middle parts of the Red Sea, for Dr. Malcolmson (as he informs me) collected from the cliffs of Camaran Island (latitude 15 deg 30' S.) shells and corals, apparently recent, at a height between thirty and forty feet; and Mr. Salt ("Travels in Abyssinia") describes a similar formation a little southward on the opposite shore at Amphila. Moreover, near the mouth of the Gulf of Suez, although on the coast opposite to that on which Dr. Ruppell says that the modern beds attain a height of only thirty to forty feet, Mr. Burton (Lyell's "Principles of Geology," 5th edition, volume iv., page 25.) found a deposit replete with existing species of shells, at the height of 200 feet. In an admirable series of drawings by Captain Moresby, I could see how continuously the cliff-bounded low plains of this formation extended with a nearly equable height, both on the eastern and western shores. The southern coast of Arabia seems to have been subjected to the same elevatory movement, for Dr. Malcolmson found at Sahar low cliffs containing shells and corals, apparently of recent species.

The PERSIAN GULF abounds with coral-reefs; but as it is difficult to distinguish them from sand-banks in this shallow sea, I have coloured only some near the mouth; towards the head of the gulf Mr. Ainsworth (Ainsworth's "Assyria and Babylon," page 217.) says that the land is worn into terraces, and that the beds contain organic remains of existing forms. The WEST INDIAN ARCHIPELAGO of "fringed" islands, alone remains to be mentioned; evidence of an elevation within a late tertiary epoch of nearly the whole of this great area, may be found in the works of almost all the naturalists who have visited it. I will give some of the principal references in a note. (On Florida and the north shores of the Gulf of Mexico, Rogers' "Report to Brit. Assoc." volume iii., page 14. – On the shores of Mexico, Humboldt, "Polit. Essay on New Spain," volume i., page 62. (I have also some corroborative facts with respect to the shores of Mexico.) – Honduras and the Antilles, Lyell's "Principles," 5th edition, volume iv., page 22. – Santa Cruz and Barbadoes, Prof. Hovey, "Silliman's Journal", volume xxxv., page 74. – St. Domingo, Courrojolles, "Journ de Phys." tom. liv., page 106. – Bahamas, "United Service Journal", No. lxxi., pages 218 and 224. Jamaica, De la Beche, "Geol. Man." page 142. – Cuba, Taylor in "Lond. and Edin. Mag." volume xi., page 17. Dr. Daubeny also, at a meeting of the Geolog. Soc., orally described some very modern beds lying on the N.W. parts of Cuba. I might have added many other less important references.)

It is very remarkable on reviewing these details, to observe in how many instances fringing-reefs round the shores, have coincided with the existence on the land of upraised organic remains, which seem, from evidence more or less satisfactory, to belong to a late tertiary period. It may, however, be objected, that similar proofs of elevation, perhaps, occur on the coasts coloured blue in our map: but this certainly is not the case with the few following and doubtful exceptions.

The entire area of the Red Sea appears to have been upraised within a modern period; nevertheless I have been compelled (though on unsatisfactory evidence, as given in the Appendix) to class the reefs in the middle part, as barrier-reefs; should, however, the statements prove accurate to the less height of the tertiary bed in this middle part, compared with the northern and southern districts, we might well suspect that it had subsided subsequently to the general elevation by which the whole area has been upraised. Several authors (Ellis, in his "Polynesian Researches," was the first to call attention to these remains (volume i., page 38), and the tradition of the natives concerning them. See also Williams, "Nar. of Missionary Enterprise," page 21; also Tyerman and G. Bennett, "Journal of Voyage," volume i., page 213; also Mr. Couthouy's "Remarks," page 51; but this principal fact, namely, that there is a mass of upraised coral on the narrow peninsula of Tiarubu, is from hearsay evidence; also Mr. Stutchbury, "West of England Journal," No. i., page 54. There is a passage in Von Zach, "Corres. Astronom." volume x., page 266, inferring an uprising at Tahiti, from a footpath now used, which was formerly impassable; but I particularly inquired from several native chiefs, whether they knew of any change of this kind, and they were unanimous in giving me an answer in the negative.) have stated that they have observed shells and corals high up on the mountains of the Society Islands, – a group encircled by barrier-reefs, and, therefore, supposed to have subsided: at Tahiti Mr. Stutchbury found on the apex of one of the highest mountains, between 5,000 and 7,000 feet above the level of the sea, "a distinct and regular stratum of semi-fossil coral." At Tahiti, however, other naturalists, as well as myself, have searched in vain at a low level near the coast, for upraised shells or masses of coral-reef, where if present they could hardly have been overlooked. From this fact, I concluded that probably the organic remains strewed high up on the surface of the land, had originally been embedded in the volcanic strata, and had subsequently been washed out by the rain. I have since heard from the Rev. W. Ellis, that the remains which he met with, were (as he believes) interstratified with an argillaceous tuff; this likewise was the case with the shells observed by the Rev. D. Tyerman at Huaheine. These remains have not been specifically examined; they may, therefore, and especially the stratum observed by Mr. Stutchbury at an immense height, be contemporaneous with the first formation of the Society Islands, and be of any degree of antiquity; or they may have been deposited at some subsequent, but probably not very recent, period of elevation; for if the period had been recent, the entire surface of the coast land of these islands, where the reefs are so extensive, would have been coated with upraised coral, which certainly is not the case. Two of the Harvey, or Cook Islands, namely, Aitutaki and Manouai, are encircled by reefs, which extend so far from the land, that I have coloured them blue, although with much hesitation, as the space within the reef is shallow, and the outline of the land is not abrupt. These two islands consist of coral-rock; but I have no evidence of their recent elevation, besides, the improbability of Mangaia, a fringed island in the same group (but distant 170 miles), having retained its nearly perfect atoll-like structure, during any immense lapse of time after its upheaval. The Red Sea, therefore, is the only area in which we have clear proofs of the recent elevation of a district, which, by our theory (although the barrier-reefs are there not well characterised), has lately subsided. But we have no reason to be surprised at oscillation, of level of this kind having occasionally taken place. There can be scarcely any doubt that Savage, Aurora (Aurora Island is described by Mr. Couthouy ("Remarks," page 58); it lies 120 miles north-east of Tahiti; it is not coloured in the appended map, because it does not appear to be fringed by living reefs. Mr. Couthouy describes its summit as "presenting a broad table-land which declines a few feet towards the centre, where we may suppose the lagoon to have been placed." It is about two hundred feet in height, and consists of reef-rock and conglomerate, with existing species of coral embedded in it. The island has been elevated at two successive periods; the cliffs being marked halfway up with a horizontal water-worn line of deep excavations. Aurora Island seems closely to resemble in structure Elizabeth Island, at the southern end of the Low Archipelago.), and Mangaia Islands, and several of the islands in the Friendly group, existed originally as atolls, and these have undoubtedly since been upraised to some height above the level of the sea; so that by our theory, there has here, also, been an oscillation of level, – elevation having succeeded subsidence, instead of, as in the middle part of the Red Sea and at the Harvey Islands, subsidence having probably succeeded recent elevation.

 

It is an interesting fact, that Fais, which, from its composition, form, height, and situation at the western end of the Caroline Archipelago, one is strongly induced to believe existed before its upheaval as an atoll, lies exactly in the prolongation of the curved line of the Mariana group, which we know to be a line of recent elevation. I may add, that Elizabeth Island, in the southern part of the Low Archipelago, which seems to have had the same kind of origin as Fais, lies near Pitcairn Island, the only one in this part of the ocean which is high, and at the same time not surrounded by an encircling barrier-reef.

ON THE ABSENCE OF ACTIVE VOLCANOES IN THE AREAS OF SUBSIDENCE, AND ON THEIR FREQUENT PRESENCE IN THE AREAS OF ELEVATION.

Before making some concluding remarks on the relations of the spaces coloured blue and red, it will be convenient to consider the position on our map of the volcanoes historically known to have been in action. It is impossible not to be struck, first with the absence of volcanoes in the great areas of subsidence tinted pale and dark blue, – namely, in the central parts of the Indian Ocean, in the China Sea, in the sea between the barriers of Australia and New Caledonia, in the Caroline, Marshall, Gilbert, and Low Archipelagoes; and, secondly, with the coincidence of the principal volcanic chains with the parts coloured red, which indicates the presence of fringing-reefs; and, as we have just seen, the presence in most cases of upraised organic remains of a modern date. I may here remark that the reefs were all coloured before the volcanoes were added to the map, or indeed before I knew of the existence of several of them.

The volcano in Torres Strait, at the northern point of Australia, is that which lies nearest to a large subsiding area, although situated 125 miles within the outer margin of the actual barrier-reef. The Great Comoro Island, which probably contains a volcano, is only twenty miles distant from the barrier-reef of Mohila; Ambil volcano, in the Philippines, is distant only a little more than sixty miles from the atoll-formed Appoo reef: and there are two other volcanoes in the map within ninety miles of circles coloured blue. These few cases, which thus offer partial exceptions to the rule, of volcanoes being placed remote from the areas of subsidence, lie either near single and isolated atolls, or near small groups of encircled islands; and these by our theory can have, in few instances, subsided to the same amount in depth or area, as groups of atolls. There is not one active volcano within several hundred miles of an archipelago, or even a small group of atolls. It is, therefore, a striking fact that in the Friendly Archipelago, which owes its origin to the elevation of a group of atolls, two volcanoes, and, perhaps, others are known to be in action: on the other hand, on several of the encircled islands in the Pacific, supposed by our theory to have subsided, there are old craters and streams of lava, which show the effects of past and ancient eruptions. In these cases, it would appear as if the volcanoes had come into action, and had become extinguished on the same spots, according as the elevating or subsiding movements prevailed.

There are some other coasts on the map, where volcanoes in a state of action concur with proofs of recent elevation, besides those coloured red from being fringed by coral-reefs. Thus I hope to show in a future volume, that nearly the whole line of the west coast of South America, which forms the greatest volcanic chain in the world, from near the equator for a space of between 2,000 and 3,000 miles southward, has undergone an upward movement during a late geological period. The islands on the north-western shores of the Pacific, which form the second greatest volcanic chain, are very imperfectly known; but Luzon, in the Philippines, and the Loo Choo Islands, have been recently elevated; and at Kamtschatka (At Sedanka, in latitude 58 deg N. (Von Buch's "Descrip. des Isles Canaries," page 455). In a forthcoming part, I shall give the evidence referred to with respect to the elevation of New Zealand.) there are extensive tertiary beds of modern date. Evidence of the same nature, but not very satisfactory, may be detected in Northern New Zealand where there are two volcanoes. The co-existence in other parts of the world of active volcanoes, with upraised beds of a modern tertiary origin, will occur to every geologist. (During the subterranean disturbances which took place in Chile, in 1835, I have shown ("Geolog. Trans." 2nd Ser., vol. v., page 606) that at the same moment that a large district was upraised, volcanic matter burst forth at widely separated points, through both new and old vents.) Nevertheless, until it could be shown that volcanoes were inactive, or did not exist in subsiding areas, the conclusion that their distribution depended on the nature of the subterranean movements in progress, would have been hazardous. But now, viewing the appended map, it may, I think, be considered as almost established, that volcanoes are often (not necessarily always) present in those areas where the subterranean motive power has lately forced, or is now forcing outwards, the crust of the earth, but that they are invariably absent in those, where the surface has lately subsided or is still subsiding. (We may infer from this rule, that in any old deposit, which contains interstratified beds of erupted matter, there was at the period, and in the area of its formation, a TENDENCY to an upward movement in the earth's surface, and certainly no movement of subsidence.)

ON THE RELATIONS OF THE AREAS OF SUBSIDENCE AND ELEVATION.

The immense surfaces on the map, which, both by our theory and by the plain evidence of upraised marine remains, have undergone a change of level either downwards or upwards during a late period, is a most remarkable fact. The existence of continents shows that the areas have been immense which at some period have been upraised; in South America we may feel sure, and on the north-western shores of the Indian Ocean we may suspect, that this rising is either now actually in progress, or has taken place quite recently. By our theory, we may conclude that the areas are likewise immense which have lately subsided, or, judging from the earthquakes occasionally felt and from other appearances, are now subsiding. The smallness of the scale of our map should not be overlooked: each of the squares on it contains (not allowing for the curvature of the earth) 810,000 square miles. Look at the space of ocean from near the southern end of the Low Archipelago to the northern end of the Marshall Archipelago, a length of 4,500 miles, in which, as far as is known, every island, except Aurora which lies just without the Low Archipelago, is atoll-formed. The eastern and western boundaries of our map are continents, and they are rising areas: the central spaces of the great Indian and Pacific Oceans, are mostly subsiding; between them, north of Australia, lies the most broken land on the globe, and there the rising parts are surrounded and penetrated by areas of subsidence (I suspect that the Arru and Timor-laut Islands present an included small area of subsidence, like that of the China Sea, but I have not ventured to colour them from my imperfect information, as given in the Appendix.), so that the prevailing movements now in progress, seem to accord with the actual states of surface of the great divisions of the world.

The blue spaces on the map are nearly all elongated; but it does not necessarily follow from this (a caution, for which I am indebted to Mr. Lyell), that the areas of subsidence were likewise elongated; for the subsidence of a long, narrow space of the bed of the ocean, including in it a transverse chain of mountains, surmounted by atolls, would only be marked on the map by a transverse blue band. But where a chain of atolls and barrier-reefs lies in an elongated area, between spaces coloured red, which therefore have remained stationary or have been upraised, this must have resulted either from the area of subsidence having originally been elongated (owing to some tendency in the earth's crust thus to subside), or from the subsiding area having originally been of an irregular figure, or as broad as long, and having since been narrowed by the elevation of neighbouring districts. Thus the areas, which subsided during the formation of the great north and south lines of atolls in the Indian Ocean, – of the east and west line of the Caroline atolls, – and of the north-west and south-east line of the barrier-reefs of New Caledonia and Louisiade, must have originally been elongated, or if not so, they must have since been made elongated by elevations, which we know to belong to a recent period.

I infer from Mr. Hopkins' researches ("Researches in Physical Geology," Transact. Cambridge Phil. Soc., volume vi, part i.), that for the formation of a long chain of mountains, with few lateral spurs, an area elongated in the same direction with the chain, must have been subjected to an elevatory movement. Mountain-chains, however, when already formed, although running in very different directions, it seems (For instance in S. America from latitude 34 deg, for very many degrees southward there are upraised beds containing recent species of shells, on both the Atlantic and Pacific side of the continent, and from the gradual ascent of the land, although with very unequal slopes, on both sides towards the Cordillera, I think it can hardly be doubted that the entire width has been upraised in mass within the recent period. In this case the two W.N.W. and E.S.E. mountain-lines, namely the Sierra Ventana and the S. Tapalguen, and the great north and south line of the Cordillera have been together raised. In the West Indies the N. and S. line of the Eastern Antilles, and the E. and W. line of Jamaica, appear both to have been upraised within the latest geological period.) may be raised together by a widely-acting force: so, perhaps, mountain-chains may subside together. Hence, we cannot tell, whether the Caroline and Marshall Archipelagoes, two groups of atolls running in different directions and meeting each other, have been formed by the subsidence of two areas, or of one large area, including two distinct lines of mountains. We have, however, in the southern prolongation of the Mariana Islands, probable evidence of a line of recent elevation having intersected one of recent subsidence. A view of the map will show that, generally, there is a tendency to alternation in the parallel areas undergoing opposite kinds of movement; as if the sinking of one area balanced the rising of another.

The existence in many parts of the world of high table-land, proves that large surfaces have been upraised in mass to considerable heights above the level of the ocean; although the highest points in almost every country consist of upturned strata, or erupted matter: and from the immense spaces scattered with atolls, which indicate that land originally existed there, although not one pinnacle now remains above the level of the sea, we may conclude that wide areas have subsided to an amount, sufficient to bury not only any formerly existing table-land, but even the heights formed by fractured strata, and erupted matter. The effects produced on the land by the later elevatory movements, namely, successively rising cliffs, lines of erosion, and beds of literal shells and pebbles, all requiring time for their production, prove that these movements have been very slow; we can, however, infer this with safety, only with respect to the few last hundred feet of rise. But with reference to the whole vast amount of subsidence, necessary to have produced the many atolls widely scattered over immense spaces, it has already been shown (and it is, perhaps, the most interesting conclusion in this volume), that the movements must either have been uniform and exceedingly slow, or have been effected by small steps, separated from each other by long intervals of time, during which the reef-constructing polypifers were able to bring up their solid frameworks to the surface. We have little means of judging whether many considerable oscillations of level have generally occurred during the elevation of large tracts; but we know, from clear geological evidence, that this has frequently taken place; and we have seen on our map, that some of the same islands have both subsided and been upraised. I conclude, however, that most of the large blue spaces, have subsided without many and great elevatory oscillations, because only a few upraised atolls have been observed: the supposition that such elevations have taken place, but that the upraised parts have been worn down by the surf, and thus have escaped observation, is overruled by the very considerable depth of the lagoons of all the larger atolls; for this could not have been the case, if they had suffered repeated elevations and abrasion. From the comparative observations made in these latter pages, we may finally conclude, that the subterranean changes which have caused some large areas to rise, and others to subside, have acted in a very similar manner.

 

RECAPITULATION.

In the three first chapters, the principal kinds of coral-reefs were described in detail, and they were found to differ little, as far as relates to the actual surface of the reef. An atoll differs from an encircling barrier-reef only in the absence of land within its central expanse; and a barrier-reef differs from a fringing-reef, in being placed at a much greater distance from the land with reference to the probable inclination of its submarine foundation, and in the presence of a deep-water lagoon-like space or moat within the reef. In the fourth chapter the growing powers of the reef-constructing polypifers were discussed; and it was shown, that they cannot flourish beneath a very limited depth. In accordance with this limit, there is no difficulty respecting the foundations on which fringing-reefs are based; whereas, with barrier-reefs and atolls, there is a great apparent difficulty on this head; in barrier-reefs from the improbability of the rock of the coast or of banks of sediment extending, in every instance, so far seaward within the required depth; – and in atolls, from the immensity of the spaces over which they are interspersed, and the apparent necessity for believing that they are all supported on mountain-summits, which although rising very near to the surface-level of the sea, in no one instance emerge above it. To escape this latter most improbable admission, which implies the existence of submarine chains of mountains of almost the same height, extending over areas of many thousand square miles, there is but one alternative; namely, the prolonged subsidence of the foundations, on which the atolls were primarily based, together with the upward growth of the reef-constructing corals. On this view every difficulty vanishes; fringing reefs are thus converted into barrier-reefs; and barrier-reefs, when encircling islands, are thus converted into atolls, the instant the last pinnacle of land sinks beneath the surface of the ocean.

Thus the ordinary forms and certain peculiarities in the structure of atolls and barrier-reefs can be explained; – namely, the wall-like structure on their inner sides, the basin or ring-like shape both of the marginal and central reefs in the Maldiva atolls – the union of some atolls as if by a ribbon – the apparent disseverment of others – and the occurrence, in atolls as well as in barrier-reefs, of portions of reef, and of the whole of some reefs, in a dead and submerged state, but retaining the outline of living reefs. Thus can be explained the existence of breaches through barrier-reefs in front of valleys, though separated from them by a wide space of deep water; thus, also, the ordinary outline of groups of atolls and the relative forms of the separate atolls one to another; thus can be explained the proximity of the two kinds of reefs formed during subsidence, and their separation from the spaces where fringing-reefs abound. On searching for other evidence of the movements supposed by our theory, we find marks of change in atolls and in barrier-reefs, and of subterranean disturbances under them; but from the nature of things, it is scarcely possible to detect any direct proofs of subsidence, although some appearances are strongly in favour of it. On the fringed coasts, however, the presence of upraised marine bodies of a recent epoch, plainly show, that these coasts, instead of having remained stationary, which is all that can be directly inferred from our theory, have generally been elevated.

Finally, when the two great types of structure, namely barrier-reefs and atolls on the one hand, and fringing-reefs on the other, were laid down in colours on our map, a magnificent and harmonious picture of the movements, which the crust of the earth has within a late period undergone, is presented to us. We there see vast areas rising, with volcanic matter every now and then bursting forth through the vents or fissures with which they are traversed. We see other wide spaces slowly sinking without any volcanic outburst, and we may feel sure, that this sinking must have been immense in amount as well as in area, thus to have buried over the broad face of the ocean every one of those mountains, above which atolls now stand like monuments, marking the place of their former existence. Reflecting how powerful an agent with respect to denudation, and consequently to the nature and thickness of the deposits in accumulation, the sea must ever be, when acting for prolonged periods on the land, during either its slow emergence or subsidence; reflecting, also, on the final effects of these movements in the interchange of land and ocean-water on the climate of the earth, and on the distribution of organic beings, I may be permitted to hope, that the conclusions derived from the study of coral-formations, originally attempted merely to explain their peculiar forms, may be thought worthy of the attention of geologists.

Рейтинг@Mail.ru