bannerbannerbanner
Наука о данных. Базовый курс

Брендан Тирни
Наука о данных. Базовый курс

Почему сейчас?

Есть ряд факторов, способствующих росту науки о данных. Как мы уже говорили, появление больших данных обусловлено относительной легкостью, с которой организации могут собирать информацию. Записи транзакций в точках продаж, клики на онлайн-платформах, публикации в социальных сетях, приложения на смартфонах и прочее – все это каналы, через которые компании теперь могут создавать ценные профили отдельных клиентов. Другим фактором является коммодификация хранилищ данных с экономией на масштабе, что делает хранение информации дешевле, чем когда-либо прежде. На это влияет и колоссальный рост мощности компьютеров. Графические карты и процессоры (GPU) были изначально разработаны для быстрой визуализации графики в компьютерных играх. Отличительная особенность графических процессоров – способность выполнять быстрое умножение матриц, а это полезно не только для рендеринга графики, но и для машинного обучения. В последние годы графические процессоры были адаптированы и оптимизированы для использования в машинном обучении, что способствовало заметному ускорению обработки данных и обучения моделей. Также стали доступны удобные инструменты для обработки данных, которые снизили барьеры для доступа к ним. В совокупности это означает, что сбор, хранение и обработка данных никогда еще не были такими простыми.

За последние 10 лет появились более мощные модели машинного обучения, известные как глубокое обучение, которые произвели революцию в компьютерной обработке данных языка и изображений. Термин «глубокое обучение» описывает семейство моделей многослойных нейронных сетей. Нейронные сети существуют с 1940-х гг., но лучше всего они проявили себя с большими сложными наборами данных и мощными вычислительными ресурсами для обучения. Таким образом, появление глубокого обучения в последние несколько лет связано с ростом больших данных и вычислительной мощности. Тем не менее не будет преувеличением сказать, что влияние глубокого обучения на целый ряд областей исключительно. История AlphaGo[20] от DeepMind является отличным примером того, как глубокое обучение произвело революцию в области исследований. Го – настольная игра, созданная в Китае 3000 лет назад. Играть в го проще, чем в шахматы: игроки по очереди размещают фигуры на доске с целью захвата фигур противника или окружения пустой территории. Однако простота правил и тот факт, что в гo используется доска с бо́льшим числом клеточек, означают и большее число возможных конфигураций, нежели в шахматах. Число возможных конфигураций в го больше, чем число атомов во Вселенной, и это делает го гораздо более сложной игрой для компьютера, чем шахматы, в силу огромного пространства для поиска и сложности в оценке всех возможных конфигураций. Команда DeepMind использовала модели глубокого обучения, чтобы AlphaGo смогла оценивать конфигурации на доске и выбирать следующий ход. В результате AlphaGo стала первой компьютерной программой, которая победила профессионального игрока, а в марте 2016 г. она одержала победу над 18-кратным чемпионом мира по го Ли Седолем в матче, который посмотрели более 200 млн человек во всем мире. Еще совсем недавно, в 2009 г., лучшая компьютерная программа для игры в го оценивалась как соответствующая любительскому уровню, а уже спустя семь лет AlphaGo обыграла чемпиона мира. В 2016 г. в самом престижном академическом журнале Nature была опубликована статья, описывающая алгоритмы глубокого обучения, заложенные в AlphaGo[21].

Глубокое обучение также оказало огромное влияние на ряд публичных потребительских технологий. В настоящее время Facebook использует глубокое обучение для распознавания лиц и анализа текста, чтобы подбирать людям рекламу на основе их онлайн-разговоров. Google и Baidu используют глубокое обучение для распознавания изображений, титрования и поиска, а также для машинного перевода. Виртуальные помощники Apple Siri, Amazon Alexa, Microsoft Cortana и Samsung Bixby используют распознавание речи на основе глубокого обучения. Huawei разрабатывает виртуального помощника для китайского рынка, в котором также будет использоваться система распознавания речи с глубоким обучением. В главе 4 мы более подробно расскажем об этом. Хотя глубокое обучение является важной технической разработкой, возможно, с точки зрения роста науки о данных наиболее интересным его аспектом будет демонстрация возможностей и преимуществ самой науки о данных и привлечение внимания организаций к результатам таких успешных историй.

Разоблачение мифов

Наука о данных дает много преимуществ современным организациям, но вокруг нее крутится и масса слухов, поэтому важно понять, каковы реальные ограничения науки о данных. Одним из самых больших мифов является вера в то, что наука о данных – автономный процесс, который сам найдет решения наших проблем. Но на деле на всех этапах этого процесса требуется квалифицированный человеческий контроль. Люди нужны для того, чтобы сформулировать проблему, спроектировать и подготовить данные, выбрать, какие алгоритмы машинного обучения являются наиболее подходящими, критически интерпретировать результаты анализа и спланировать соответствующие действия, основанные на выявленных закономерностях. Без квалифицированного человеческого надзора проект по обработке данных не сможет достичь своих целей. Лучшие результаты мы видим, когда объединяются человеческий опыт и компьютерная мощь. Как выразились Линофф и Берри: «Глубинный анализ данных позволяет компьютерам делать то, что они умеют лучше всего, – копаться в куче информации. Это, в свою очередь, дает людям делать то, что лучше всего получается у них, – ставить задачу и осмыслять результаты»[22].

Широкое и все возрастающее использование науки о данных означает, что сегодня самая большая проблема для многих организаций заключается в найме аналитиков. Человеческий фактор в науке о данных имеет первостепенное значение, и ограниченный ресурс специалистов является основным узким местом в распространении самой науки. Чтобы лучше представить масштаб нехватки специалистов, заглянем в отчет McKinsey Global Institute (MGI) за 2011 г.: прогноз дефицита сотрудников с навыками обработки данных и аналитики в Соединенных Штатах в ближайшие годы – от 140 000 до 190 000 человек; еще больший дефицит – 1,5 млн человек – менеджеров, способных понимать науку о данных и аналитические процессы на уровне, который позволяет им надлежащим образом запрашивать и интерпретировать результаты[23]. Спустя пять лет в своем отчете за 2016 г. MGI по-прежнему убежден, что наука о данных имеет огромный неиспользованный потенциал в расширяющемся диапазоне приложений, а дефицит специалистов сохраняется с прогнозируемой нехваткой 250 000 человек в ближайшей перспективе[24].

Второй большой миф заключается в том, что каждый проект непременно нуждается в больших данных и требует глубокого обучения. Как правило, наличие большого объема данных помогает, но гораздо важнее, чтобы данные были правильными. Подобные проекты часто ведутся в организациях, которые располагают значительно меньшими ресурсами с точки зрения данных и вычислительной мощности, чем Google, Baidu или Microsoft. Примеры проектов небольшого масштаба: прогнозирование требований возмещения ущерба в страховой компании, которая обрабатывает около 100 заявок в месяц; прогноз отсева студентов в университете, где обучаются менее 10 000 человек; ожидания ротации членов профсоюза с несколькими тысячами участников. Эти примеры показывают, что организации не нужно обрабатывать терабайты информации или иметь в своем распоряжении огромные вычислительные ресурсы, чтобы извлечь выгоду из науки о данных.

Третий миф заключается в том, что современное программное обеспечение для обработки данных легко в использовании и, следовательно, сама наука о данных тоже не представляет собой ничего сложного. Программное обеспечение для обработки данных действительно стало более удобным для пользователя. Однако такая простота может скрывать тот факт, что для получения правильных результатов требуются как соответствующие знания предметной области, так и знания в области науки о данных, касающиеся свойств данных и допущений, лежащих в основе глубинного анализа и алгоритмов машинного обучения. На самом деле никогда еще не было так легко стать плохим специалистом по данным. Как и в любой сфере жизни, если вы не понимаете, что делаете, то будете совершать ошибки. Опасность, связанная с наукой о данных, заключается в том, что людей может отпугивать сложность технологии, и тогда они готовы поверить любым результатам, которые выдает им программное обеспечение. Однако всегда высока вероятность неправильной постановки задачи, неверного ввода данных или ненадлежащего использования методов анализа. В этих случаях результаты, представленные программным обеспечением, скорее всего, будут ответом на неправильные вопросы или окажутся основанными на неверных данных или расчетах.

 

Последний миф, который мы упомянем, – вера в то, что наука о данных быстро окупается. Истинность этого утверждения зависит исключительно от контекста организации. Внедрение науки о данных может потребовать значительных инвестиций с точки зрения инфраструктуры и найма персонала с опытом соответствующей работы. Более того, наука о данных не даст положительных результатов по каждому проекту. Иногда в данных нет искомого бриллианта или организация не в состоянии использовать прозрение, полученное в результате анализа. Однако в тех случаях, когда бизнес-проблема ясна, а соответствующая информация и человеческий опыт доступны, наука о данных, как правило, обеспечивает действенное понимание, которое дает организации конкурентное преимущество.

Глава 2
Что такое данные и что такое набор данных?

Как следует из названия, наука о данных фундаментально зависит от самих данных. По существу данные являются абстракцией реальной сущности (человека, объекта или события). Термины «переменная», «признак» или «атрибут» часто используются взаимозаменяемо для обозначения отдельно взятой абстракции. Обычно каждый объект описывается рядом атрибутов. Например, книга может иметь следующий набор атрибутов: автор, название, тема, жанр, издатель, цена, дата публикации, количество слов, глав, страниц, издание, ISBN и т. д.

Набор данных состоит из данных, относящихся к совокупности объектов, причем каждый объект описан в терминах набора атрибутов. В своей наиболее простой форме[25] набор данных организован в виде матрицы размером n × m, называемой аналитической записью, где n – количество объектов (строк), а m – количество атрибутов (столбцов). В науке о данных термины «набор данных» и «аналитическая запись» часто используются взаимозаменяемо, при этом аналитическая запись является конкретным представлением набора данных. Таблица 1 иллюстрирует аналитическую запись для набора данных нескольких книг. Каждый ряд в таблице описывает одну книгу. Термины «объект», «экземпляр», «пример», «сущность», «кейс» и «запись» используются в науке о данных для обозначения строки. Таким образом, набор данных содержит набор объектов, и каждый из объектов описывается набором атрибутов.


Построение аналитической записи – необходимое условие работы с данными. Фактически в большинстве проектов по обработке данных бо́льшая часть времени и усилий уходит на создание, очистку и обновление аналитической записи. Аналитическая запись часто создается путем объединения информации из множества различных источников: может потребоваться извлечение данных из нескольких баз, хранилищ или компьютерных файлов в разных форматах (например, в виде электронных таблиц и CSV-файлов) или скрапинг[26] в интернете или социальных сетях.

В таблице 1 перечислены четыре книги. Если не считать атрибут ID, который представляет собой простую метку строки и, следовательно, бесполезен для анализа, каждая книга описана с помощью шести атрибутов: название, автор, год, обложка, издание и цена. Мы могли бы включить их намного больше для каждой книги, но, как это обычно и бывает в подобных проектах, нам нужно ограничить набор данных. В нашем случае мы должны просто уместить атрибуты в размер страницы. Однако в большинстве проектов ограничения касаются того, какие атрибуты доступны, а также какие из них имеют отношение к проблеме, которую мы пытаемся решить в конкретной предметной области. Включение дополнительных атрибутов в набор данных никогда не обходится без затрат. Во-первых, вам потребуются дополнительные время и усилия для сбора и проверки качества данных в атрибутах для каждого объекта и их интеграции в аналитическую запись. Во-вторых, включение нерелевантных или избыточных атрибутов может отрицательно сказаться на производительности многих алгоритмов, используемых для анализа данных. Включение большого количества атрибутов в набор данных увеличивает вероятность того, что алгоритм найдет не относящиеся к делу или ложные закономерности, которые только кажутся статистически значимыми в рамках выборки объектов. С проблемой правильных атрибутов сталкиваются все проекты науки о данных, и иногда ее решение сводится к итеративному процессу проведения экспериментов методом проб и ошибок, где каждая итерация проверяет результаты, полученные с использованием различных подмножеств атрибутов.

Существуют разные типы атрибутов, и для каждого из них подходят разные виды анализа. Их понимание и распознавание является фундаментальным навыком для специалиста по данным. К стандартным типам относятся числовые (включая интервальные и относительные), номинальные и порядковые. Числовые атрибуты описывают измеримые величины, представленные целыми числами или действительными величинами. Числовые атрибуты могут быть измерены как по шкале интервалов, так и по шкале отношений. Интервальные атрибуты измеряются по шкале с фиксированными, но произвольными единицами измерений и произвольным началом отсчета. Примерами интервальных атрибутов могут быть измерения даты и времени. К ним применяют упорядочивание и вычитание. Умножение, деление и прочие операции в этом случае не подходят. Шкала отношений аналогична шкале интервалов с единственным отличием: ее нулевая точка – истинный нуль. Он указывает на то, что количество, которое могло бы быть измерено, отсутствует. Особенность шкалы отношений состоит в том, что мы можем описать любое значение как кратное другому значению. Температура – прекрасный пример для понимания разницы между шкалой интервалов и шкалой отношений[27]. По шкале Цельсия и по шкале Фаренгейта температура измеряется интервально, поскольку значение 0 на любой из этих шкал не указывает на отсутствие тепла. Таким образом, хотя мы и можем вычислить разницу между температурами на этих шкалах и сравнить различия, мы не можем сказать, что 20 °C – это в два раза теплее, чем 10 °C. В отличие от этого, измерение температуры в кельвинах ведется по шкале отношений, поскольку 0 K (абсолютный нуль) – это температура, при которой прекращается всякое тепловое движение. Другие распространенные примеры измерений по шкале отношений: количество денег, вес, рост и экзаменационные отметки (шкала 0‒100). В таблице 1 атрибут года является примером атрибута шкалы интервалов, а атрибут цены – примером атрибута шкалы отношений.

Номинальные (также известные как категориальные) атрибуты принимают значения из ограниченного набора. Эти значения являются именами (поэтому они и называются номинальными) для категорий, классов или обстоятельств. Примеры номинальных атрибутов включают семейное положение (холост, женат, разведен) или тип пива (эль, светлый эль, пильзнер, портер, стаут и т. д.). Бинарный атрибут – это особый случай номинального атрибута, у которого набор возможных значений ограничен только двумя. Примером может служить бинарный атрибут «спам», который описывает, является электронная почта спамом (да) или не является (нет). К номинальным атрибутам не могут быть применены упорядочивание или арифметические операции. Обратите внимание, что номинальный атрибут может быть отсортирован в алфавитном порядке, но эта операция не тождественна упорядочиванию. В таблице 1 автор и название являются примерами номинальных атрибутов.

Порядковые атрибуты аналогичны номинальным, но с той разницей, что можно ранжировать значения переменных. Например, атрибут, описывающий ответ на вопрос анкетирования, может принимать значения из области определения: «очень не нравится», «не нравится», «нейтрально», «нравится» и «очень нравится». Существует естественное упорядочивание этих значений – от сильной неприязни к сильной симпатии (или, наоборот, в зависимости от условия). Тем не менее важной особенностью порядковых атрибутов является отсутствие понятия равного расстояния между этими значениями. Например, когнитивное расстояние между неприязнью и нейтральным отношением может быть отличным от расстояния между симпатией и сильной симпатией. В результате неуместно применять арифметические операции (такие, как усреднение) к порядковым атрибутам. В таблице 1 атрибут «издание» является примером порядкового атрибута. Граница между номинальными и порядковыми данными не всегда четкая. Для примера возьмем атрибут, который описывает погоду и может принимать значения «солнечно», «дождливо», «пасмурно». Один человек может сказать, что этот атрибут номинальный, значения которого не упорядочены, в то время как другой будет утверждать, что атрибут является порядковым, при этом рассматривая облачность как промежуточное значение между «солнечно» и «дождливо»[28].

Тип атрибута (числовой, порядковый, номинальный) влияет на методы анализа и понимания данных. Эти методы включают в себя как основную статистику, которую мы можем использовать для описания распределения значений атрибута, так и более сложные алгоритмы, которые мы применяем для выявления закономерностей отношений между атрибутами. На базовом уровне анализа числовые атрибуты допускают арифметические операции, а типичный статистический анализ, применяемый к числовым атрибутам, заключается в измерении центральной тенденции (с использованием среднего значения атрибута) и разброса значений атрибутов (с использованием дисперсии или стандартного отклонения). Однако не имеет смысла применять арифметические операции к номинальным или порядковым атрибутам. Базовый анализ этих типов атрибутов включает в себя подсчет того, сколько раз значение встречается в наборе данных, и/или вычисление процента вхождения этого значения.

Данные генерируются в процессе абстракции, поэтому они всегда являются результатом принятых человеком решений и сделанного им выбора. В основе каждой абстракции конкретный человек или группа людей решают, от чего абстрагироваться и какие категории или измерения использовать в полученном отображении. Поэтому данные никогда не являются объективным описанием мира. Данные всегда частичны и предвзяты. Как заметил Альфред Коржибски: «Карта не является отображаемой ею территорией, но если она верная, то имеет структуру, подобную территории, которая содержит информацию о ее полезности[29]».

 


Другими словами, данные не являются идеальным отображением сущностей и процессов реального мира, которые мы пытаемся постичь, но если быть аккуратным при моделировании и сборе данных, то результаты анализа могут дать полезную информацию для решения наших реальных проблем. Сюжет фильма «Человек, который изменил все» (Moneyball), о котором упоминалось в главе 1, служит примером того, что определяющим фактором успеха во многих проектах науки о данных являются абстракции (атрибуты), подходящие для использования в данной конкретной области. Напомним, что ключом в этой истории было осознание клубом «Окленд Атлетикс» того, что процентное соотношение попадания игрока на базу и упущенных возможностей является более информативным показателем его успешности, чем традиционно принятые в бейсболе статистические данные, такие как средний уровень достижений. Использование различных атрибутов для описания игроков дало «Окленд Атлетикс» лучшую, нежели у других команд, модель, которая позволила им выявлять недооцененных игроков и конкурировать с крупными клубами при меньшем бюджете.

Эта история иллюстрирует применимость старой поговорки «Что посеешь – то и пожнешь» к науке о данных: если входные данные вычислительного процесса неверны, то выходные данные также будут неправильны. Действительно, наука о данных имеет две особенности, которые всегда необходимо учитывать: а) для успешности проектов необходимо уделять много внимания созданию самих данных (как с точки зрения выбора, который мы делаем при моделировании абстракции, так и с точки зрения качества данных, полученных в процессе) и б) необходимо проверять результаты процесса, хотя бы потому, что выявленная компьютером закономерность может оказаться основанной на отклонениях модели и увести нас в сторону от реального понимания анализируемых процессов.

  https://deepmind.com/research/alphago/.
21Linoff, Gordon S., and Michael JA Berry. 2011. Data Mining Techniques: For Marketing, Sales, and Customer Relationship Management. John Wiley & Sons.
22Lewis, Michael. 2004. Moneyball: The Art of Winning an Unfair Game. 1st edition. New York: W. W. Norton & Company.
23Дабнер Стивен, Левитт Стивен. Фрикономика. Экономист-хулиган и журналист-сорвиголова исследуют скрытые причины всего. – М.: Альпина Паблишер, 2019.
24Few, Stephen. 2012. Show Me the Numbers: Designing Tables and Graphs to Enlighten. Second edition. Burlingame, CA: Analytics Press.
25Хотя многие наборы данных можно описать как плоскую матрицу n × m, существуют сценарии, в которых набор данных представлен в более сложной форме: например, если набор данных описывает эволюцию нескольких атрибутов во времени, то каждый момент времени в наборе данных будет представлен двухмерной плоской матрицей n × m, перечисляющей состояние атрибутов в данный момент времени, но общий набор данных будет трехмерным, где время используется для связывания двумерных срезов момента. В таком контексте термин «тензор» иногда используется для придания идее матрицы дополнительного измерения.
26Скрапинг (англ. scraping) – в широком смысле сбор данных с интернет-ресурсов. – Прим. пер.
27Han, Jiawei, Micheline Kamber, and Jian Pei. 2011. Data Mining: Concepts and Techniques, Third Edition. Haryana, India; Burlington, MA: Morgan Kaufmann.
28Hall, Mark, Ian Witten, and Eibe Frank. 2011. Data Mining: Practical Machine Learning Tools and Techniques.
  Korzybski, Alfred. 1996. “On Structure.” In Science and Sanity: An Introduction Ot NonAristotelian Systems and General Semantics, edited by Charlotte Schuchardt-Read, CDROM First Edition. European Society for General Semantics. http://esgs.free.fr/uk/art/sands.htm.
1  2  3  4  5  6  7  8  9  10  11  12  13  14 
Рейтинг@Mail.ru