Суставы конечностей человека выдерживают значительную нагрузку, особенно суставы ног. Труднее всего приходится тазобедренному суставу. Верхний конец бедренной кости, ее головка, сочленяющаяся с костями таза, имеют шарообразную форму диаметром около 4 сантиметров. Она плотно пригнана к сферической полости тазовых костей, второму элементу сустава.
Благодаря шаровидной форме сочленяющихся поверхностей этот сустав многоосевой, то есть сочлененные в нем кости имеют возможность совершать три вида движений, допуская движение ног в шести направлениях. Человек способен выносить ногу вперед и отводить назад, как это происходит при ходьбе, отводить ногу в сторону и в направлении другой ноги и, наконец, поворачивать ее вокруг длинной оси и по часовой стрелке, и в противоположном направлении, так что пальцы вместо нормального положения могут поворачиваться и вправо, и влево.
Когда человек совершает обычный шаг, его нога, на которую он только что опирался, поворачивается относительно человеческого туловища примерно на 57°, при этом головка бедренной кости, скользя по поверхности суставной впадины, проходит путь, равный 2 сантиметрам.
Давление на головку бедра всей массы человеческого тела достаточно большое. Когда человек с весом тела около 70 килограммов соблюдает неподвижность, опираясь на обе ноги, на его тазобедренные суставы ложится груз равный 55–60 килограммам. Однако реальное давление, которое испытывают эти суставы, гораздо больше – оно в 1,6 раза превышает вес опирающихся на. них частей тела. Это происходит потому, что центр тяжести человеческого тела не находится непосредственно над линией, соединяющей головки бедра, и поэтому для поддержания вертикальной позы несколько крупных мышц тазового пояса сокращаются, с силой прижимая сочленяющиеся поверхности друг к другу и не позволяя туловищу наклоняться. Поэтому реальная нагрузка на эти суставы у семидесятикилограммового человека достигает 95 килограммов, а если у него за плечами рюкзак, весящий 20 килограммов, давление возрастет до 125 килограммов. Для грузчика, поднявшего на спину мешок муки весом 50 килограммов, оно возрастает до 175 килограммов; ну а какое давление испытывают тазобедренные суставы спортсмена-штангиста, поднимающего тяжелую штангу, сосчитайте сами.
Кости отличаются большой прочностью. Большая берцовая кость человека, находящаяся в вертикальном положении, способна выдержать груз в 1800 килограммов, а бедренная – полторы тонны, вес среднего легкового автомобиля. Раздавить кость гораздо труднее, чем сломать. При высокой прочности кости, тем не менее, обладают хрупкостью, и поэтому ранения, ушибы, падения нередко сопровождаются переломами. Чаще других происходят переломы бедренной кости в области ее шейки. Дело в том, что форма бедренной кости, в отличие от других длинных костей конечностей, далека от идеально прямой. У нормально развитого человека шейка бедренной кости отходит от ее основой части под углом от 115° до 140°. Иными словами, верхняя часть бедренной кости имеет форму, напоминающую дугу. Поэтому при падениях на расставленные ноги или на бок изгиб кости усиливается, и в районе шейки, наиболее тонкой части, возникает перелом.
Конечности человека и животных приводят в движение удивительные моторы – поперечно-полосатые скелетные мышцы.
Если через окуляр микроскопа взглянуть на мышечную ткань, станет понятно, почему они так называются. Мышцы образованы многоядерными клетками, имеющими вид волокон длиной до 40 мм. Каждое волокно, словно бусы, состоит из чередующихся светлых и темных дисков. Темный диск и обе половинки светлых дисков, прилегающих к нему справа и слева, являются рабочими элементами мышечного волокна. А сами волокна собраны в пучки таким образом, что все темные диски каждого волокна располагаются точно один под другим, образуя темную полоску, а все светлые диски таким же образом формируют белую полоску. Они и придают скелетным мышцам сходство с зеброй, то есть делают их поперечно-полосатыми.
Внутри мышечного волокна находятся плотно упакованные толстые нити белка миозина и тонкие нити белка актина. Оба вида нитей соединены между собой поперечными мостиками. Когда мышца по нервным волокнам получает от мозга команду сократиться, тонкие белковые нити каждого рабочего элемента мышечного волокна с помощью поперечных мостиков, скользят навстречу друг другу по толстым нитям, как по канатной дороге, направляясь к его центру. В результате мышечные волокна укорачиваются и утолщаются, соответственно утолщается вся мышца и, укорачиваясь, тянет за собой кости, к которым прикреплена, вызывая движение конечности.
Работа мышц имеет одну важную особенность. Если мышечное волокно получило по нерву приказ сократиться, то оно выполнит это распоряжение с максимально возможной для него силой. Сократиться сильнее или, наоборот, вполсилы оно не может. А сила всей мышцы зависит не от качества работы отдельных мышечных волокон; а от того, из скольких волокон состоит мышца, сколько из них получили приказ сократиться и дисциплинированно выполнили это распоряжение. А вот скорость сокращения у каждой мышцы своя. У человека быстрее всего сокращаются глазные мышцы, затем мышцы ног и рук. А вот туловищные мышцы, обеспечивающие дыхание, расторопными не назовешь. Очень быстро сокращаться они не способны.
Нет, речь здесь пойдет не о гражданской войне, не о сражениях между «красными» и «белыми», а о работе скелетных мышц. Виды работ, которые приходится выполнять скелетным мышцам, отличаются друг от друга, – не существует таких мышц, которые могли бы справиться с любой работой. Летательные мышцы насекомых во время полета делают несколько сот сокращений в секунду. Мышцы двустворчатых моллюсков, замыкающие раковину у гигантской тропической тридакны или у нашей пресноводной беззубки, которую можно встретить практически в любом озерке или речке, напротив, не способны совершать мгновенные сокращения, зато могут удерживать раковину закрытой в течение многих часов и сжимать створки так крепко, что открыть их голыми руками невозможно. Ясно, что для выполнения этих работ нужны разные мышцы.
Поперечно-полосатые мышцы человека и животных состоят из мышечных волокон двух типов: быстрых и медленных. Медленные мышцы принято называть «красными». На вид они действительно красные или темно-красные. Такой цвет придают им многочисленные кровеносные сосуды, наполненные кровью, и особое красное вещество – миоглобин, способное накапливать про запас кислород и хранить его для использования при более усиленной работе мышц.
Быстрые мышцы называют «белыми». Они действительно выглядят белесыми, так как в них меньше кровеносных сосудов и они почти не содержат миоглобина. Белые мышцы сильнее красных, но, имея плохо развитую кровеносную сеть, не способную поставлять достаточное количество кислорода, когда работа мышц резко возрастает, и лишенные его запасов, быстро утомляются. Красные мышцы сокращаются с меньшей силой, но благодаря хорошей обеспеченности кислородом могут подолгу работать, не испытывая усталости. Утки, гуси, некоторые другие птицы во время весенних и осенних перелетов способны. Лететь без отдыха 48–60 часов подряд. Их крылья приводятся в движение красными мышцами. У домашней курицы мышцы крыльев, расположенные на груди, так называемая полярка, белые. Они гораздо светлее мышц на куриных ногах. Вот почему домашние куры не способны летать, зато бегают совсем неплохо.
Наша Земля, как и другие планеты Солнечной системы, имеет очень неоднородный климат. Есть у нас такие заветные местечки в Антарктиде, где температура воздуха падает до -88 °C, зато кое-где в Африке она нередко поднимается до +55 °C, но это, конечно, крайности. Они наблюдаются в очень немногих районах Земного шара. А в основном климат более приветлив. Видимо, поэтому у большинства живых существ процессы жизнедеятельности возможны при температуре тела от 0 до 40 °C. Достаточно широкий диапазон, казалось бы, вместительная ниша, пригодная для жизни любых животных, и все-таки для многих из них в этой нише тесновато.
Есть водоросли, которые живут, размножаются и, по-видимому, прекрасно себя чувствуют в горячих источниках с температурой 70–90 °C. Среди вечных полярных льдов тоже существует жизнь. Почему же, несмотря на большую тепло- и холодоустойчивость многих животных, их активная жизнедеятельность возможна лишь в относительно узком диапазоне?
Температура определяет скорость движения молекул любых веществ. Чем температура ниже, тем скорость движения молекул меньше и, следовательно, тем медленнее идут химические реакции, пока их скорость не понизится настолько, что активная жизнедеятельность станет невозможной. Это происходит при температуре образования льда. Основные химические реакции в организме идут в водных растворах.
Верхний предел переносимых температур зависит от устойчивости белков и жиров. Уже при нагревании выше 40 °C они настолько изменяются, что клетки гибнут. Вот поэтому все животные стремятся к оптимальным для них температурным условиям. Достигают они этого разными способами.
Как известно, существуют так называемые холоднокровные животные, температура тела которых зависит от температуры окружающей среды. В холодную погоду им приходится прибегать к замысловатым способам, чтобы как-то обогреться. Самый простой способ – подыскать для себя местечко с подходящим микроклиматом. Когда становится холодно, они греются на солнце, прячутся в норах, закапываются в кучи лесного мусора, ищут убежище на дне глубоких водоемов.
Теплокровные животные обладают способностью сохранять постоянную температуру тела, не прибегая к помощи солнца и к другим внешним источникам тепла. В холодную погоду они сами вырабатывают много тепла, а в жаркую умеют отдавать его излишки в окружающую среду. Впрочем, к повышению температуры животные нашей планеты приспособлены хуже, чем к холоду.
Морозы многие животные переносят легко. Разница между температурой тела и температурой окружающей среды может превышать 80 °C, а животные очень скрупулезно будут поддерживать постоянство своей температуры. Особенно много подобных животных среди представителей арктической и антарктической фауны. Например, температура тела белой куропатки равна +43 °C; куропатка сохраняет ее и при сорокаградусном морозе.
Умение вырабатывать тепло – не главное условие поддержания постоянной температуры тела. Одежда, пожалуй, важнее. Многие наши северные животные к зиме одеваются так тепло, что в морозы им не нужно вырабатывать дополнительное тепло: сколько они вырабатывали его летом, столько вырабатывают и зимой. У песцов, например, такая теплая шубка что, пока температура воздуха не опустится ниже -50 °C, они не мерзнут и не будут ощущать, что пора усилить производство тепла.
Теплокровные животные изобрели универсальный способ поддержания температуры своего тела, специально вырабатывая тепло. Впрочем, это делает любая клетка любого организма, когда активно участвует в обмене веществ. Например, маленькое одноклеточное существо амеба, хоть на миллионную долю градуса, но теплее окружающей среды. Естественнее что маленькие животные и тепла вырабатывают мало, и быстро отдают его в окружающую среду. Зато у крупных и тепла вырабатывается больше, и оно дольше сохраняется.
Маленькая форель, живущая в прохладной воде горных ручьев, всего на 0,012 °C теплее воды, а температура тела у крупного тунца или марлина на 6 °C выше температуры воды.
Чтобы не замерзнуть, у теплокровных животных есть много приспособлений. Когда температура воздуха понижается, они умеют сделать свою одежду более теплой, то есть усиливают теплоизоляцию своего тела. Для этого они сжимают кожные кровеносные сосуды, при этом их кожа становится холодной, а это значит, что она меньше отдает тепла в окружающую среду. Шерсть и перья взъерошиваются, между шерстинками становится больше воздуха, а неподвижный воздух – отличный теплоизолятор. Кстати, эта милая привычка топорщить шерсть сохранилась и у человека. Когда мы мерзнем, у нас появляется гусиная кожа, причем остатки волос, те крохотные волоски, что еще сохранились на нашем теле, становятся дыбом. К сожалению, нам теплее от этого не бывает.
Если принятые меры не дали нужных результатов и охлаждение не прекратилось, возникает дрожь. Она совсем не бесполезна, как можно было бы думать. Любые мышечные сокращения сопровождаются выделением значительного количества тепла, поэтому с появлением дрожи выработка тепла возрастает.
К помощи мышц для увеличения производства тепла прибегают многие. Вот один из примеров. Самки некоторых видов крупных питонов, отложив яйца, не бросают их на произвол судьбы, а, обвившись кольцами вокруг них, несут караул до тех пор, пока не вылупятся змеята.
Конечно, на такого сторожа немногие рискнут напасть, слишком опасна наседка, но оказалось, что дело совсем не в этом. Самка питона охраняет свои яйца не столько от врагов, сколько от холода. Это может показаться неправдоподобным, ведь всем известно, что змеи – животные холоднокровные. Однако такое представление не совсем верно. Если змея немного побегает, то даже она может слегка согреться. Когда температура воздуха достаточно высока, питон лежит неподвижно, но как только станет прохладнее, у него начинает работать поперечная мускулатура тела, при этом оно то становится тонким, то опять утолщается. Со стороны кажется, что питон просто вздрагивает всем своим телом. В прохладную погоду наседка трудится со всей силой, на которую способна (а силой она обладает немаленькой), пока не согреется сама и не согреет яйца. Вот какие удивительные бывают наседки.
Человек даже в сильный мороз может легко согреться, занявшись тяжелой физической работой. Впрочем, он может согреться, подобно питонам, внешне не обнаруживая активной деятельности и даже не вздрагивая.
У теплокровных животных и человека при понижении температуры окружающей среды образование тепла заметно увеличивается. Это происходит за счет усиления обменных процессов. Иными словами, как бы за счет сжигания во внутриклеточных «печах» организма глюкозы. Это нормальный процесс поддержания температуры тела на необходимом уровне. А усиление выработки тепла за счет работы мышц, будь это дрожь, бег, переноска тяжестей или другая форма мышечной деятельности, – это аварийный способ предотвратить дальнейшее понижение температуры тела и согреться.