Многие считают, что знакомы с запахом хлора, зачастую считая своим долгом заметить, что или водопроводная вода пахнет хлором, или вода в бассейне пахнет хлором. Тем не менее, характерный для бассейнов запах – отнюдь не запах хлора, а запах трихлорида азота (NCl3), который образуется в результате взаимодействия хлора с мочевиной. Откуда попадает в бассейн мочевина?
Во-первых, с потом – не зря перед посещением бассейна рекомендуют принимать душ, а во-вторых, скажем так – в ходе одного из социологических опросов 17 % американцев признались, что у них был случай, когда они «спутали» бассейн с туалетом. Хлор способен отравлять не только микроорганизмы, но и живые формы большего размера, и 22 апреля 1915 года будущий лауреат Нобелевской премии по химии Фриц Габер, о котором говорилось в главе про азот, испытал на западном фронте Великой войны новый тип оружия – удушливые газы смертельного действия, а дебютировал в этой незавидной роли опять же хлор.
Элементный хлор при комнатной температуре представляет собой газ жёлто-зелёного цвета. Название, предложенное Хэмфри Дэви, было из-за цвета («хлорос» на древнегреческом означает «цвет молодой листвы» или просто «жёлто-зеленый»). Заметим, что до газобалонной атаки слово «хлор» не имело ярко выраженной негативной коннотации, скорее наоборот – было символом обновления. Так, например, у моего земляка, поэта Гавриила Романовича Державина есть стихотворение «Ода к царевичу Хлору»:
Прекрасный Хлор! Фелицын внук,
Сын матери премилосердной,
Сестер и братьев нежный друг,
Супруг супруге милый, верный —
О ты! чей рост, и взор, и стан
Есть витязя породы царской,
Который больше друг, чем хан
Орды, страны своей татарской!
Впервые хлор был получен в 1774 году Карлом Вильгельмом Шееле в результате реакции соляной кислоты с диоксидом марганца, носам Шееле не смог правильно интерпретировать полученные результаты, считая, что получил не простое вещество, а соединение, содержащее кислород. Именно Дэви, воспроизведя эксперименты Шееле в 1810 году, сделал вывод о том, что получил его коллега и назвал элемент.
Хлор, как и фтор относится к галогенам – крайне активным неметаллам, и, конечно, не встречается на Земле в свободном виде, только в виде соединений. Основные минералы, в которые входит хлор – каменная соль (NaCl), сильвинит (KCl) и карналлит (KCl.MgCl2.6H2O). В школе на уроках химии хлор является единственным химическим элементом, для которого учителя химии рекомендуют использовать нецелочисленное значение атомной массы – 35.5 а.е.м. Это объясняется тем, что хлор в земной коре состоит из двух изотопов – на 75 % из 35Cl и на 25 % из 37Cl, масса которых при усреднении и дает значение 35.5 (строго говоря, как составитель большого количества химических задач олимпиадного уровня я бы советовал и для многих других элементов использовать значения атомных масс, округлённые до десятых).
Большая часть хлора, производимая в настоящее время, используется синтетической органической химии – в превращениях с участием органических соединений хлор может принимать участие в реакциях, относящихся к трём основным механизмам.
Во-первых, это свободно-радикальное замещение – реакция, в ходе которой молекула хлора распадется на два радикала (чаще всего в результате фотохимической активации) и в результате всех превращений из основных компонентов нефти и природного газа – насыщенных углеводородов, получаются хлорпроизводные и хлороводород (который тоже находит своё применение).
Второй тип реакций хлора с органическими веществами – электрофильное присоединение хлора к двойным или тройным связям. Хлор, будучи электроотрицательным элементом, стремится туда, где много электронов (электрофильный – любящий электроны), а двойные и тройные связи богаты электронной плотностью. В результате присоединения тройная связь углеводорода превращается в двойную, а двойная – в одинарную, и образуется две новых связи углерод-хлор. Чаще всего присоединение хлора к кратным связям проводят в темноте, чтобы идущий на свету процесс замещения не добавлял побочных продуктов.
Третий тип реакции электрофильное замещение, протекающее при взаимодействии хлора с ароматическими углеводородами (также непосредственно встречающимися в составе нефти). В результате процесса, известного, как реакция Фриделя-Крафтса, получаются хлорпроизводные ароматических углеводородов и опять же хлороводород. Катализатором этой реакции являются хлорид алюминия или хлорид трехвалентного железа.
Области применения хлора многочисленны. Сотни и тысячи тонн хлора используют в целлюлозно-бумажном производстве, для получения хлорированных полимеров (наиболее известный из которых поливинилхлорид – ПВХ) и для получения органических растворителей – хлороформа, дихлорметана и дихлорэтана. Чуть меньшее количество хлора идет на получение красителей, лекарств, антисептиков и даже спичек и фейерверков. Луи Бертолле предложил применять в качестве окислителя пиротехнических составов хлорат калия (KClO3), который мы сейчас называем «бертолетовой солью». В настоящее время и в пиротехнических составах, и для изготовления спичек применяют менее опасный и более богатый кислородом перхлорат (KClO4), он же применялся как окислитель в разгонных реактивных двигателях американских шаттлов.
Ну и, конечно, наиболее известное применение хлора – отбеливающие и дезинфицирующие составы, а также обеззараживание питьевой воды и воды для закрытых и открытых бассейнов. Хлорировать питьевую воду начали в Лондоне после эпидемии холеры 1850 года. Тогда английский врач и основатель учения о гигиене Джон Сноу выяснил, что эпицентром заболевания является колодец в лондонском районе Сохо, воду в колодце обработали хлорной известью, и эпидемия пошла на убыль. Джон Сноу известен доведением до ума способа практического применения ещё одного производного хлора – хлороформа (CHCl3). С помощью хлороформа и разработанного лично им ингалятора Сноу провел обезболивание родов хлороформом королеве Англии Виктории в 1853 и в 1857 годах.
Соединения хлора также применялись для изготовления аэрозольных баллончиков и холодильников. Пропеллантом («выталкивателем») вещества из баллона и хладагентом в системе холодильника выступали хлорфторуглеводороды, также известные как фреоны. Однако в 1974 году Марио Молина, Шервуд Роулэнд и Поль Крутцен показали, что продукты превращений фреонов в атмосфере, в первую очередь – радикалы хлора могут способствовать разрушению озонового слоя. В 1995 году Молина, Роуленд и Крутцен получили Нобелевскую премию по химии, а раньше этого, с января 1989 года начал действовать Монреальский протокол, запрещающий производство ряда хлорфторуглеводородов. С момента начала действия протокола прошло почти двадцать лет, и озоновый слой в приполярных регионах действительно начал восстанавливаться, однако, как показывают результаты исследований 2018 года, озоновый слой над крупными годами в умеренном и тропическом поясах не восстанавливается, а кое-где даже продолжает разрушаться, что, очевидно говорит о необходимости искать других виновных в образовании озоновых дыр помимо радикалов хлора.
В Периодической системе только у тринадцати химических элементов символ содержит одну латинскую букву. Это водород, бор, углерод, азот, кислород, фтор, фосфор, сера, калий, ванадий, иттрий, йод и уран.
Несколько десятков лет к этому клубу относился и аргон, однако через шесть десятков лет после обнаружения аргона, в 1957 году Международный союз по теоретической и прикладной химии (ИЮПАК) решил, что однобуквенный символ для инертного газа (пусть и первого инертного газа, открытого человеком) – непозволительная роскошь и заменил символ аргона А на привычный нам сейчас Ar. Правда, эта замена привела к другому казусу – в органической химии символом Ar (от aryl) принято обозначать ароматические фрагменты. Часто бывает, что незнакомый с этим обычаем студент или школьник, открывая продвинутый учебник по органической химии, думает, что органики настолько всемогущи, что получили огромное количество соединений инертного аргона.
О богатых химических свойствах аргона говорить не приходится. В настоящее время известно только одно химическое соединение этого элемента – гидрофторид аргона (HArF). Оно было получено в 2000 году в группе финского химика Маркку Рясянена в университете Хельсинки. Исследователи при температуре −265 °C облучали ультрафиолетом смесь аргона и фтороводорода, находящихся на подложке из иодида цезия. Нагрев меньше, чем на десять градусов – до –256 °C приводит к разрушению гидрофторида аргона на аргон и фтороводород. Оно и понятно – название происходит от древнегреческого слова «аргос» – ленивый, медленный, неактивный, а о лени этого элемента можно судить по тому, что от его открытия до получения его соединения с другими элементами пошло более ста лет.
Аргон – самый распространенный благородный газ, именно поэтому он и был найден первым из элементов своего класса. На долю аргона приходится около 0.94 % атмосферы Земли и около 1.6 % атмосферы Марса. Разрежённая атмосфера Меркурия содержит до 70 % аргона. Если не учитывать пары воды, аргон третий по распространённости газ в земной атмосфере после азота и кислорода. Абсолютное его содержание в атмосфере Земли составляет сорок триллионов тонн. Это количество медленно возрастало по мере геологического старения Земли – практически весь аргон нашей атмосферы является результатом радиоактивного распада нуклида 40К, период полураспада которого составляет 12.7 миллиардов лет. Аргон был обнаружен в 1904 году в результате совместной работы физика Лорда Рэлея (Джона Уильяма Стретта) и химика Уильяма Рамзая, ставших в 1904 году лауреатами Нобелевских премий по физике и химии соответственно.
История открытия началась, когда Рэлей обнаружил, что образец азота, полученный из воздуха, отличается большей плотностью, чем азот, полученный разложением соединений аммиака. Различие было заметным, и учёные решили разделить усилия, пойдя двумя путями. Рамзай собирался найти более тяжёлый газ в азоте, выделенном из воздуха, а Рэлей – посмотреть, не образуется ли при разложении солей аммония более лёгких газов. Рамзай поглотил весь азот из «воздушного» образца, пропуская его над нагретым магниевым порошком – азот с магнием прореагировали с образованием нитрида магния (Mg3N2), однако 1 % газа не реагировал ни с чем, плотность его была больше, чем у азота. В атомном спектре нового газа содержались новые красные и зелёные линии, что подтвердило открытие нового элемента. Сейчас очевидно, что выделенный Рамзаем образец аргона был загрязнён другими инертными газами, содержащимися в нашей атмосфере. Рамзай, кстати, не был первым человеком, выделившим аргон – в 1785 Генри Кавендиш, экспериментируя с газами, обнаружил, что примерно 1 % газов из земной атмосферы не вступает в химические реакции, однако вывода об обнаружении нового газообразного элемента не сделал.
Основное применение аргона – металлургия, а точнее переплавка чугуна в сталь. В ходе этого процесса через расплавленный чугун пропускают смесь аргона с кислородом. Пузыри аргона перемешивают расплавленный металл, а кислород выжигает из чугуна лишний углерод, превращая его в углекислый газ. Аргон применяют там, где следует избежать появления кислорода – сварка активных металлов, производство титана или проведение органических и элементоорганических синтезов в атмосфере инертного газа. Заметим, что в ходе аргоновой или аргоноводуговой сварки металла нагрев и плавление металла ведут не струей аргона, а электродом, дающим электрическую дугу, а ток аргона нужен для защиты расплавленного металла от окисления (например, при сварке алюминия электрической дугой на сварной шов должно подаваться 10–20 литров в минуту). В атмосфере аргона также хранят старые архивные документы и артефакты, которые могут разрушиться от контакта с кислородом. Аргоновые лазеры, дающие синее излучение, применяются в хирургии для сварки кровеносных сосудов, разрушения опухолей и коррекции зрения с помощью микроопераций на глазе.
Аргон, как и другие инертные газы, оказывают наркотическое воздействие на организм. С 2014 года аргон считается допингом. Содержание аргона в высоких концентрациях во вдыхаемом воздухе может вызвать головокружение, тошноту, рвоту, потерю сознания и смерть от удушья (в результате кислородного голодания).
Одно, пожалуй, из самых спорных применений аргона – закачка им шин автомобилей люксового класса. Полезность этой процедуры, мягко говоря, сомнительна, так как износу шин в первую очередь, способствует качество дорожного полотна, а не то, чем они задуты. Однако, как говорится, понты дороже денег, и, если есть индивидуумы, желающие самоутвердиться перед окружающими тем, что крутые шины его крутой тачки заполнены не абы чем, а инертным газом, организации, которые помогут этим индивидуумам самоутвердится в обмен на денежные знаки, будут процветать: «На дурака не нужен нож, Ему с три короба наврешь, И делай с ним, что хошь».
Когда я долго и серьезно занимался проведением химических олимпиад школьников в Казани и Татарстане, я понял, что калий – роковой элемент. Еще можно было понять, что многие участники путают калий с кальцием – грешен и сам, в моей «Жизни замечательных веществ» в паре мест есть такие опечатки (хотя я, в отличие от школьников не путаю магний с марганцем).
Хуже другое – многолетние наблюдения показали, что некоторые участники региональной олимпиады, решая, например, задачу с вопросом: «Запишите, что произойдёт при прокаливании нитрата аммония», – самозабвенно начинали писать уравнение несуществующей реакции нитрата аммония с калием. Правда, как показывает опыт общения с англоязычными коллегами, у них почти та же беда. Слово «прокаливание» по-английски пишется «calcination», в патентной литературе до сих пор иногда проскакивает «кальцинирование», и школьники с Алабамы или Небраски в качестве ответа на аналогичный вопрос могут начать изобретать реакцию нитрата аммония с кальцием.
На самом деле название калия никакого отношения к прокаливанию не имеет, оно происходит от арабского слова аль-кали – поташ (или растительная зола) – именно из веществ, получавшихся переработкой древесной золы, и был получен этот элемент. Основой названия, которое дал калию его первооткрыватель – Хэфмри Дэви (potassium) и сохранившееся в английском, французском, испанском, португальском и польском языках, также происходит от слова «поташ». Само по себе слово «поташ» в английском языке появилось в результате сочетания слов pot (горшок) и ash (зола). Для получения поташа древесину плотных пород дерева дожигали до золы, золу несколько суток вываривали в воде в специально приспособленных для этого медных горшках. В результате этой обработки соли калия преимущественно переходили в раствор, раствор фильтровали или сливали, отделяя от осадка, после чего упаривали, получая твердую соль – поташ. Основным компонентом поташа был карбонат калия (его до сих пор называют поташом), но также содержал и другие соли калия – сульфат и хлорид (садоводы-огородники знают, что зола, оставшаяся после сжигания веток или листвы – хорошее калийное удобрение). Зачем нужны были все описанные выше мучения? До появления мыла поташ применялся для умывания рук и мойки посуды, его добавляли в смесь для производства стекла вместо соды, получая в результате хрусталь. Из поташа также можно было получить «едкий поташ» – раствор, преимущественно содержавший калиевую щёлочь. Для этого в раствор поташа добавляли известковую воду (гидроксид кальция, Са(ОН)2), протекала обменная реакция, плохо растворимые в воде карбонат и сульфат кальция выпадали в осадок, а из жидкости, оставшейся над осадком, можно было выделить гидроксил калия – едкий поташ. Именно из гидроксида в 1807 году Дэви и смог выделить первый образец металлического калия. Это открытие стало вехой в истории химии – калий стал первым металлом, для получения которого воспользовались электричеством.
За два десятка лет до открытия Дэви итальянский врач Луиджи Гальвани заметил, что прикосновение стального ножа к внутренним бедренным нервам мертвой лягушки мышцы её ноги сокращались. Дальнейшие опыты показали, что такую реакцию вызывают все металлы. Земляк Гальвани Алессандро Вольта объяснил наблюдения Гальвани электрическими явлениями и сконструировал источник постоянного тока – вольтов столб.
Применение электричества в химии началось с демонстрационных экспериментов – в 1800-х годах английский химик Уильям Николсон на своих лекциях с помощью электричества демонстрировал разложение (электролиз) воды на составляющие её водород и кислород. Дэви решил, что электричество можно использовать и в научных целях, а не только для получения уже известных веществ, и начал эксперименты с едким поташом.
И Дэви, и его современники уже представляли, что ни просто поташ, ни едкий поташ не являются самостоятельными химическими элементами, но точный состав этих веществ был неизвестен – многие в то время даже предполагали, что поташ – соединение фосфора с азотом или серой. Первые попытки Дэви окончились неудачей – электролиз водного раствора гидроксида калия приводил только к разложению воды на водород и кислород, и тогда Дэви решил избавиться от воды и подвергнуть электролизу расплавленный гидроксид калия. В октябре 1807 года эксперимент, проведённый в Королевском Институте Лондона дал свои плоды. Как позже писал в дневнике ассистировавший Дэви его кузен Эдмунд Дэви: «Мельчайшие шарики калия прорывались сквозь твердую корку поташа и загорались при контакте с атмосферой. Он [Хэмфри Дэви] не мог сдержать радости – он пританцовывал от восторга; ему потребовалось немного времени, чтобы успокоиться и подготовиться к продолжению эксперимента…».
Радость Дэви можно было понять – он не только доказал, что едкий поташ не содержит фосфора, но и получил неизвестный металл – об это говорил серебристый блеск нового элемента, который, однако на воздухе быстро исчезал из-за реакции калия с кислородом (в настоящее время для того, чтобы калий и другие щелочные металлы не окислялись, их хранят под керосином). Ещё одной необычной особенностью калия было то, что его плотность меньше воды, то есть он вполне мог бы плавать на поверхности воды, если бы не реагировал с ней. Активность калия столь высока, что он реагирует даже со льдом. Калий оказался во многом первым – первый выделенный в свободном виде щелочной металл, первый металл, полученный с помощью электричества – метода, который немного позже назвали электролизом. Дэви не стал почивать на лаврах и использовал отработанную на получении калия методику для получения металлических натрия, кальция, магния и бария.
Большая часть производящихся в настоящее время соединений калия применяются в качестве удобрений. Калий является одним из трех базовых элементов, которые необходимы для роста растений наряду с азотом и фосфором. При его недостатке в организме растения нарушается структура мембран хлоропластов – клеточных органелл, в которых проходит фотосинтез, что можно увидеть по пожелтению и затем отмиранию листьев.
Жидкий при комнатной температуре сплав калия и натрия используется в качестве теплоносителя в атомных силовых установках на быстрых нейтронах, где требуется отводить больше тепла, чем может отвести только натрий. Интересен сплав, содержащий 12 % натрия, 47 % калия и 41 % цезия. Он остается жидким до −78 °C.
Суточная норма калия в нашем рационе составляет от 3500 до 4700 миллиграмм, хотя в некоторых случаях, к которым относятся хронический алкоголизм и синдром хронической усталости, его может потребоваться больше. К богатым калием продуктам питания относятся орехи, авокадо, цитрусовые, бананы, арбуз, помидоры, фасоль, картофель, зелень, шпинат, соевые продукты, морепродукты и мясо.
Когда-то, когда я учился в школе нам говорили о четырёх вкусовых ощущениях – кислом, сладком, горьком и солёном. Где-то на рубеже двадцатого и двадцать первого веков вкус перестали рассматривать, как субъективное ощущение и «привязали» к белкам-рецепторам, которые распознают те или иные вещества. Тогда стали говорить о пятом ощущении вкуса – умами (острое, белковое), в котором задействованы рецепторы, распознающие глутамат-ион.
В 2008 году ощущений вкуса стало шесть – оказалось, что на языке крыс есть рецепторы, распознающие ионы кальция, а в 2012 году стало известно о том, что аналогичные белки-рецепторы есть и на языке человека. Мы можем чувствовать вкус кальция, но на уровне субъективных ощущений этот вкус похож на горький.
Очевидно, что все сформировавшиеся у нас за время эволюции вкусовые ощущения несут какую-то практическую цель – сладкий вкус, например, помогает нам понять, что еда богата энергией. Для чего же у нас сформировался «вкус кальция»? Дело в том, что кальций важен для обмена веществ и для нашего организма (вот только в волосах, вопреки рекламе и рогах, вопреки известному анекдоту его нет). В среднем, тело человека содержит около килограмма кальция, причем 99 % этого элемента приходится на костную ткань (это только кажется, что мало, учтите, что неорганическая матрица кости преимущественно состоит из фосфата кальция Ca3(PO4)2, так что суммарная масса фосфора и кислорода добавит к неорганической составляющей костей ещё 1.6 килограмм, а в костной ткани есть еще и белковые компоненты… Кальций – пятый по распространённости химический элемент в земной коре, где он преимущественно содержится в виде карбоната (мела или известняка). Ион кальция – пятый по распространённости ион в морской и океанской воде.
Своё название кальций получил от латинского слова calx (известь, мягкий камень). Крёстный отец и первооткрыватель кальция опять же Хэмфри Дэви, получивший его в 1808 году после успеха с выделением металлического калия. Чтобы получить кальций, Дэви подвергал электролизу смесь влажного гидроксида кальция и оксида ртути. Сейчас для промышленного производства кальция применяют электролиз расплавленного хлорида кальция. На воздухе металлический кальций быстро тускнеет, покрываясь бледно-серой пленкой, в состав которой входят оксид и нитрид. В отличие от магния, кальций сложнее поджечь, но, будучи подожжён, он горит ярким кирпично-красным пламенем.
Металлический кальций используются для получения таких металлов, как хром, торий и уран, с помощью гранул из металлического кальция удаляют следы воздуха из электровакуумных приборов. Применение соединений кальция гораздо более разнообразно и масштабно. Хроники раннего средневековья говорят о том, что строительный гипс применялся для фиксации конечностей при переломах уже в 975 году. А вот когда и где появилась технология производства того самого строительного гипса, а также цемента – уже сложно определить. Считается, что способы производства вяжущих веществ строительных с применением известняка были изобретены в третьем-четвертом тысячелетии до нашей эры одновременно в нескольких не контактировавших друг с другом культур – примерно одновременно применение кальцийсодержащих строительных материалов началось в Древнем Египте, на территории Китая и в Мезоамерике.
Вода, которую мы пьём, тоже содержит ионы кальция. То, что мы называем «жёсткой водой» – вода, содержащая повышенное количество ионов кальция и магния. Ионы этих металлов попадают в воду из-за того, что она контактирует с находящимися в земной коре соединениями кальция – карбонатом (образующим меловые или известковые залежи), сульфатом или фосфатом. Регулярное потребление жёсткой воды может вызывать формирование камней в почках, а также на зубной эмали и в суставах, образующаяся при нагревании жёсткой воды накипь может приводить в негодность нагревательные элементы чайников, стиральных и посудомоечных машин. Интересно, что часто вкус пива определяется концентрацией ионов кальция в воде, применявшейся для пивоварения, и некоторых премиум сортах концентрация кальция даже выше, чем в жёсткой воде.
Суточная норма потребления кальция составляет 1000–1300 миллиграмм. В ходе процесса биоминерализации образуются кости и зубная эмаль. Кости в нашем организме играют не только опорную функцию, они также запасают кальций. Кальций может покидать кости в результате деминерализации, например, при беременности – кальций мигрирует в формирующийся плод. Патологическая деминерализация – болезнь под названием остеопороз. При остеопорозе со временем кости теряют кальций необратимо, их масса уменьшается и, они становятся более ломкими – в конечном итоге появляется «возрастная склонность» к переломам.
Но кальций – это не только кости, это ещё и межклеточная коммуникация высших организмов. Изменение концентрации иона Ca2+ в результате действия гормонов или электрических импульсов нервно ткани заставляет работать ферменты, управляющие различными биологическими процессами, в первую очередь – сокращением мышц. Ион кальция также важен для процесса свертывания крови – при начале кровотечения тромбоциты собираются у раны или пореза и пытаются сформировать тромб и блокировать текущую кровь. Процесс тромбообразования регулируется ионами кальция, витамином К и белком-фибриногеном. При дефиците кальция (или витамина К) кровь будет сворачиваться медленнее.