Угарный газ (моноксид углерода, оксид углерода (II)) – один из наиболее распространенных отравляющих газов в природе. Формула его проста и незамысловата – СО. Главным источником угарного газа является неполное сгорание топлива, которое используется человечеством, – угля, нефти, мазута, природного газа, сушеного кизяка и других углеродсодержащих материалов, которые когда-то человечество сжигало для получения энергии. Точную статистику отравлений угарным газом по России найти не удалось, британцы уверяют, что на Острове ежегодно в среднем регистрируется около 50 смертельных случаев бытовых отравлений угарным газом только из-за неправильного использования каминов и прочих обогревательных систем.
Поскольку угарный газ не имеет ни запаха, ни цвета, ни вкуса, не является раздражающим и легко смешивается с воздухом, а также беспрепятственно распространяется, он получил название «молчаливого убийцы». Определить потенциальную опасность отравления угарным газом практически невозможно, и отравление диагностируется только по симптомам, которыми, в частности, является возникающая из-за кислородного голодания мозга дезориентированность движения, которая и породила народную метафору «метаться как угорелый» (кот) – да-да – изначально в этой фразе был кот (или кошка).
В наши времена, когда печек стало меньше и глаголом «угорать» уже перестали пугать детей (по крайней мере, городских), дети почему-то подумали, что угорать – это просто дезориентироваться в пространстве и времени без последствий, хотя, строго говоря, «немножко угорев», можно так и остаться угорелым идиотом из-за необратимых повреждений мозга, а можно и угореть до смерти. В итоге «угорать» теперь почти равно «веселиться», а городские школьники путают угарный газ с веселящим.
Тем не менее в истории науки был человек, который специально угорал, вдыхая угарный газ. Это был Джон Скотт Холдейн. Этот физиолог превратил своё тело в лабораторию, вдыхая различные газы и отмечая, какое воздействие они оказывают на его организм. Холдейн является одним из создателей учения о дыхании человека, о его регуляции и роли в этом процессе углекислого газа. Он исследовал токсическое действие окиси углерода, разработал методы борьбы с отравлением этим газом. Впервые определил состав альвеолярного воздуха у человека с помощью созданного им газоаналитического аппарата, его работы спасли жизнь огромному количеству рабочих, солдат, водолазов и шахтеров. Вот как описывает биограф повседневные «забавы» Холдейна: «Он дышал хлором, метаном, углекислым газом, угарным газом (ипритом), чистым кислородом, азотом, горчичным газом и бог знает чем ещё в самых невероятных сочетаниях. Бывало, что он прекращал эксперимент только тогда, когда его лицо синело».
Работы Холдейна, посвященные токсичности угарного газа, спасли много жизней. Для того чтобы точно протоколировать влияние газов (в том числе и угарного) на организм, Холдейн вдыхал газы практически до их смертельной концентрации в крови. Одной из рекомендаций по безопасному труду в шахтах была рекомендация Холдейна использовать в качестве «датчиков» на угарный газ канареек – маленькой птице нужно меньше газа до смертельного исхода, и она травится быстрее, чем среднестатистический шахтер. Сейчас птичек в шахтах уже не травят, но датчики на угарный газ в шахтах до сих пор называют «канарейками».
Молчаливый убийца – угарный газ – опасен тем, что поражает один из наиболее важных для жизни позвоночных белок – гемоглобин. Задача гемоглобина, локализованного в красных кровяных тельцах, состоит в том, чтобы подхватывать в легких кислород и переносить его с током крови к органам и тканям человека.
Угарный газ мешает этому нормально поставленному обмену между воздухом, кровью и тканями. Он более прочно связывается с гемоглобином железа, образуя карбоксиметилгемоглобин, который чуть более чем бесполезен для транспорта кислорода к органам, желающим подышать. Вопреки распространенному мнению, карбоксиметилгемоглобин не теряет способности связываться с кислородом воздуха – проблема в том, что, «подхватив» кислород, карбоксигемоглобин не может отдавать его, кислород оказывается «запертым» в токе крови. Кровь насыщается кислородом, становясь все краснее и краснее, а органы задыхаются от нехватки кислорода, поскольку карбоксиметилгемоглобин ведет себя по отношению к кислороду, как пресловутая собака на сене.
Молчаливый убийца обладает жестоким чувством юмора – благодаря тому, что кровь насыщена кислородом, у жертв отравления угарным газом сохраняется здоровый румянец (как в анекдоте: ну как живые сидели). Несмертельные отравления угарным газом могут вызывать тошноту, головокружение и необратимые повреждения мозга, при больших дозах угарного газа и/или времени нахождения в атмосфере, содержащей угарный газ, у человека могут появляться галлюцинации, происходить потеря сознания с конвульсиями и дыханием Чейн-Стокса.
Современные «канарейки», предупреждающие о превышении опасной концентрации угарного газа, можно приобрести не только в «промышленном» исполнении, но и в «карманном варианте» – для персонального использования (если читатели доверяют изделиям китайских умельцев, то на али-экспрессе такой датчик можно купить за сумму не дороже 500 рублей). Для человека, относящегося к группе повышенного риска к бытовому отравлению угарным газом (коттедж или дачный дом с собственной системой отопления, своя банька), возможно, весьма полезная инвестиция в собственную безопасность.
Ранее химическое определение угарного газа проводили так: через слой оксида кремния, модифицированного хлоридом палладия, пропускали анализируемую смесь газов, при наличии в смеси угарного газа он восстанавливал палладий до металла, и наблюдалось потемнение, сейчас датчики работают, как спектральные сигнализаторы, способные обнаружить тройную углерод-кислородную связь, которая характерна только для угарного газа.
Кстати, фильтрующие противогазы, как военные, так и гражданские, от угарного газа не защитят – молекула СО слишком мала и легко проходит через угольный фильтр, в данном случае помогает только изолирующий противогаз, он же дыхательный аппарат, который полностью изолирует органы дыхания человека от окружающей среды.
Угарный газ хотя и является убийцей, тем не менее вырабатывается и организмом человека. Возможно, это связано с тем, что в те времена, когда атмосфера Земли была богата угарным газом, зарождение определенных биологических механизмов на этой ранней стадии развития жизни вполне могло обуславливаться этой молекулой.
Организм человека продуцирует 3–6 мл угарного газа в день, причем определенные воспалительные процессы (а также патологические состояния) могут значительно увеличить это количество. Эндогенный (вырабатывающийся организмом человека) угарный газ играет роль регулятора кровяного давления при стрессах и нейрональной защиты при апоплексии и болезни Альцгеймера; в конце ХХ века было установлено, что угарный газ является нейротрансмиттером (участвует в передаче информации между нервными клетками) для клеток гиппокампа.
Угарный газ, он же моноксид углерода, был впервые идентифицирован шотландским химиком Уильямом Крюйкшенком из Вулиджа в 1800 году – он первым выделил его из коксового газа. Современный лабораторный способ получения угарного газа основан на дегидратации (отщеплении воды) муравьиной кислоты.
Угарный газ сгорает голубым пламенем с образованием углекислого газа и часто, в форме «генераторного» газа, применяется в качестве топлива. Генераторный газ, который получают, пропуская воздух над раскалённым каменным углём или коксом в специальных печах – газогенераторах, даже использовался в качестве топлива во время Второй мировой. Ещё одно применение угарного газа – процесс Монда – очистка никеля, основанная на том, что угарный газ легко реагирует с никелем, образуя жидкий при комнатной температуре и летучий тетракарбонилникель Ni(CO)4, который отгоняют (как в самогонном аппарате) и разрушают до металлического никеля.
Итак, хотя опасность угореть и не встать потенциально остается и до сих пор, угарный газ, как, впрочем, и почти любое химическое вещество, которым можно отравиться, играет определенную положительную роль и в нашем организме, и в промышленности. В общем, читатели, дышите свежим воздухом, радуйтесь жизни, но при этом не угорайте от угарного газа.
Веселящий газ (N2O) – он же закись азота, он же оксид азота(I), он же, как любят говорить школьные учителя химии, «оксид одновалентного азота». Последнее, кстати, совершенно неправильно – ни одного атома одновалентного азота в закиси азота нет. Его строение таково:
Небольшое скучное отступление о природе химической связи – почему так сложно, а не так, как лихо любят рисовать школьные учителя и обученные ими дети: N – O–N? Все просто – у атома азота на внешней оболочке находятся три неспаренных (валентных) электрона. В гипотетической частице N – O–N по одному электрону от каждого атома азота идёт на образование связи с кислородом, и у каждого атома азота осталось бы по два неспаренных электрона, а у N – O–N должно быть ЧЕТЫРЕ неспаренных электрона. Строго говоря, частица с одним неспаренным электроном уже реакционноспособна (такие частицы, например – те самые радикалы-оксиданты, которыми СМИ пугают легковареных слушателей), а система с четырьмя неспаренными электронами должна реагировать с чем угодно «стремительным домкратом». Так вот – регулярно рассказываю это на курсах учителям, они добросовестно записывают, кивают, но потом возвращаются в школы и продолжают учить детей формуле N – O–N. Всё ж таки сложнее всего учить химии именно школьных учителей химии – любые попытки сломать их устоявшиеся представления о жизни и химии либо встречаются в штыки, либо игнорируются.
Закись азота была одним из газов, открытых в период развития химии, известного как «пневматическая химия», одним из известных химиков того времени – Джозефом Пристли. В 1772–1774 годах. Пристли открыл «щелочной воздух» – аммиак. Он детально исследовал полученный им при взаимодействии поваренной соли и серной кислоты «солянокислый воздух» – хлористый водород, который он собрал над ртутью. Действуя разбавленной азотной кислотой на медь, получил «селитряный воздух» – окись азота; на воздухе этот бесцветный газ бурел, превращаясь в диоксид азота. Пристли открыл закись азота, пропуская «селитряный воздух» через воду. В настоящее время закись азота получают, нагревая нитрат аммония, который распадется на воду и закись азота.
То, что закись азота вызывает эйфорию и обладает анестезирующими свойствами, было обнаружено довольно рано – это выяснил ещё один представитель пневматической химии Хэмфри Дэви где-то в 1790-х годах. Однако первый задокументированный пример практического использования закиси азота в медицине датируется 1844 годом, и первым человеком, применившим закись азота для анестезии, был американский дантист Хорас Уэллс.
Уэллс был дантистом-самоучкой и не имел специального образования. Впрочем, в первой половине XIX века стоматология в Америке была профессией весьма примитивной и отсталой. От дантиста требовалось лишь умение «выдёргивать» зубы, лишь немногие могли и умели делать большее.
Вечером 10 декабря 1844 года Уэллс попал на сеанс общественной демонстрации эффектов ингаляции веселящего газа, который проводил странствующий лектор Гарднер Квинси Кольтон. Полученные во время представления впечатления и наблюдения помогли Уэллсу прийти к заключению, что анестезирующее действие закиси азота можно успешно использовать при очень болезненной манипуляции – экстракции зуба.
На следующее утро Уэллс отправился в гостиницу, в которой остановился Кольтон, чтобы попросить у него некоторое количество закиси азота. Получив согласие, Уэллс решил испробовать обезболивающее действие закиси азота прежде всего на самом себе и обратился к другому дантисту – Джону Риггсу – с просьбой, чтобы тот удалил у него один здоровый зуб.
Все заинтересованные (Уэллс, Риггс, Кольтон и некоторые другие дантисты городка Хартфорд) собрались в приёмной Риггса в тот же день, 11 декабря, в послеобеденное время. Кольтон принёс газ и сам лично сделал ингаляцию большой дозы Уэллсу, а Риггс, воспользовавшись хорошим наркозом, вырвал у коллеги один из коренных моляров. Уэллс вскоре очнулся и с крайним энтузиазмом воскликнул: «Наступила новая эра в удалении зубов!» Он уверял всех присутствующих, что не почувствовал ни малейшей боли и что в процессе самой ингаляции он испытывал замечательно приятные ощущения. Это событие стало первым использованием закиси азота для обезболивания в стоматологии.
Дальнейший головокружительный успех карьеры казался Уэллсу столь же несомненным, насколько бесспорным и совершенным оказалось обезболивание при экстракции зуба, произведенной у него самого. Какое-то время он удалял зубы с ингаляцией веселящего газа в Хартфорде (причем анестезия случалась лишь в 50 % случаев), но потом, будучи в большей степени человеком действия, а не размышления, решил перебраться в город побольше – Бостон, где его ждала неудача.
В Бостоне Уэллс начал искать возможность проделать публичную демонстрацию в городской больнице, добился такой возможности, и один из гарвардских студентов согласился послужить объектом такого опыта при удалении зубов. Сейчас трудно понять, что случилось – была ли недостаточна концентрация газа, слишком рано прекратили ингаляцию, или же, наконец, добровольный подопытный оказался особо устойчивым против действия закиси, а может, он оказался слабонервным и кричал не от боли, а от страха, но во время удаления зуба он кричал. Студенты – коллеги подопытного – возмутились, заговорив о мошенничестве экспериментатора, Уэллса даже спихнули с эстрады. Очень огорченный, в полном отчаянии, он на следующее утро уехал обратно в Хартфорд, но и там его ждал удар. В Хартфорде он сделал ещё одну попытку публичной демонстрации, и на этот раз дал очень большую дозу закиси азота, что чуть не привело к смерти больного от удушья. Это окончательно разрушило последние надежды Уэллса. Он не только бросил попытки газовых наркозов, но окончательно оставил и свою профессию дантиста. Затем ингаляционный наркоз стали изучать люди менее импульсивные и более методичные, чем Уэллс, и в итоге веселящий газ стал применяться в качестве анестетика в 1860-е годы в Штатах, а затем и в Европе.
Закись азота до сих пор применяется для общего наркоза, правда, как раз те систематические изучения конца XIX века показали, что использовать чистую закись азота в качестве анестетика глубокого действия невозможно – в конце позапрошлого века его применяли в смеси с эфиром, в конце ХХ века перешли на другие добавки, как, например, изофуран. Тем не менее закись азота без добавок до сих пор применяется для неглубокого или для первичного наркоза – смесь закиси азота с воздухом в соотношении 1:1 иногда применяется при родах или перед введением более сильного обезболивающего.
Применение закиси азота для того, чтобы оживить прием или вечеринку, началось гораздо раньше, чем применение в медицине. Термин «веселящий газ» появился в 1819 году – в «Таймс» появилось объявление о «наглядных химических экспериментах с применением веселящего газа». В развлекательных целях закись азота начали использовать с 1799 года, наибольшее распространение «вечеринки с веселящим газом» получили в середине XIX века. Английский поэт Роберт Саути писал: «Я уверен, что на Небесах именно такой воздух, полный чудес и восхищения!» На таких вечеринках народ фактически токсикоманил, временами делая вдохи из резервуаров с закисью азота, смеясь без причины. Такое применение веселящего газа прекратилось в начале ХХ века, однако поскольку опьянение, вызванное закисью азота, сопровождается трансовым состоянием, веселящий газ временами применяется гипнологами при проведении наркогипноза.
С точки зрения наркотического эффекта закись азота относительно безопасна – она не вызывает физиологического привыкания, а только психологическое, не проявляя токсических свойств по отношению к организму. Тем не менее при чрезмерном вдыхании закиси азота всегда существует риск смерти от удушья: если легкие заполнены веселящим газом, туда уже не может попасть кислород, развивается кислородное голодание органов, которое может показаться человеку, находящемуся в состоянии наркотического опьянения, неопасным, однако понятно, что «показаться неопасным» и «быть неопасным» – это совсем разные вещи.
Помимо применения веселящего газа в медицине и для «поднятия настроения» известно его применение в технике. Закись азота представляет собой хороший окислитель, который применяется для увеличения мощности двигателя в автомобильных гонках и как окислитель ракетного топлива.
Веселящий газ поддерживает горение, а то, что его молекулярная масса совпадает с молекулярной массой углекислого газа (44 атомные единицы массы), отнюдь не поддерживающего горения, часто использовалось (в том числе и вашим покорным слугой) в олимпиадных задачах. Вот приходит дитё к выводу, что газ с массой 44 а.е.м., о котором говорится в задаче, горение поддерживает, да начинает репу чесать, что же это с его любимым углекислым газом случилось. Некоторые, правда, догадывались, но среднестатистическое большинство старательно рисовало не имеющие права на существование реакции горения в атмосфере углекислого газа.
Несмотря на то что в настоящее время закись азота всё же скорее вещество полезное, чем вредное, да и любители оттянуться в состоянии наркотического опьянения перешли с веселящего газа на другие препараты, с точки зрения атмосферной химии и атмосферных процессов закись азота – большая проблема. Веселящий газ представляет собой парниковый газ, парниковое действие которого в 200 выше, чем у равного с ним по массе диоксида углерода. К счастью, в атмосферу попадает не такое большое количество закиси азота, основными её источниками являются жизнедеятельность ряда микроорганизмов, а также побочные процессы превращения азотсодержащих удобрений.
И всё же, говоря о веселящем газе, стоит ещё раз подчеркнуть, что, несмотря на все его незначительные недостатки, мы должны относиться к нему с уважением и одобрением – это вещество стало применяться в качестве наркоза для операций, и, получив закись азота, доктора перестали резать по-живому или отключать человека перед операцией, аккуратно ударив его по голове тяжелым и тупым предметом.
В «Балладе о трех котиколовах» Редьярда Киплинга, повествующей о нелегкой судьбе браконьеров, решивших поохотиться на морских котиков у побережья Российской империи, встречаются строчки:
Ибо русский закон суров —
лучше пуле подставить грудь,
Чем заживо кости сгноить в рудниках,
где роют свинец и ртуть.
Ртуть и её соединения были известны людям задолго до написания «Книги джунглей». Уже древние римляне использовали минеральный ртутный пигмент киноварь (сульфид ртути, HgS). Знали римляне и о токсичных свойствах производных ртути – на ртутные рудники в Испании отправляли преступников, и приговор к ртутным рудникам по сути дела был смертным приговором, который, правда, приводился в исполнение в течение месяцев и годов.
Римляне использовали киноварь в качестве оранжево-красного красителя, а также прокаливали её для получения металлической ртути. Вдыхание мелкой пыли киновари или паров ртути приводило к одному и тому же результату – ртутному отравлению и смерти, часто долгой и мучительной.
Позже ртуть применяли для изготовления амальгам серебра и золота (амальгамой называется сплав металла с ртутью). Серебряная амальгама использовалась для изготовления зеркал, золотая – для золочения стекла, куполов церквей и красочных букв, которыми обычно начинали рукопись. После нанесения амальгамы ртути просто позволяли испариться, и такой метод нанесения металлов на поверхность приводил к высокой смертности зеркальщиков, мастеров-золотильщиков и других людей, деятельность которых требовала контакта с парами ртути. Соединения ртути пытались использовать для лечения сифилиса (неэффективно), а ученик Галилея Торричелли начал применять его в барометрах.
Существует немалое количество легенд о том, что целая когорта ученых эпох Возрождения и Просвещения завершила свою научную деятельность чуть раньше, чем могла бы, из-за ртутных отравлений. Среди отравившихся ртутью называют Исаака Ньютона, Майкла Фарадея, Блеза Паскаля. Долгое время существовала версия и о том, что жертвой ртутного отравления пал австрийский астроном Тихо Браге, причем отравителем называли даже его ученика Иоганна Кеплера, однако эксгумация могилы Браге в 2010 году и анализ его останков позволили отбросить эту версию.
Одна из ветвей алхимии рассматривала ртуть как один из трёх «первоэлементов» (наряду с серой и солью), поэтому естественно, что алхимики пытались превратить ртуть в золото. Король Британии Карл II весьма поднаторел в занятиях химией и алхимией, и его внезапную смерть в 1685 году также связывают с отравлением ртутью в результате одного из экспериментов.
Нитрат ртути использовался при изготовлении шляп для консервации фетра или войлока, а также для их размягчения. После сушки фетра на нем оставалась токсичная ртутьсодержащая пыль, шляпники отравлялись ею, и у них проявлялись симптомы, хорошо описанные Льюисом Кэрролом в «Алисе в Стране чудес». По сути дела, сумасшедший болванщик (или сумасшедший шляпник) лишь отчасти является плодом художественного вымысла – Кэррол достаточно точно описал симптомы, типичные для его современников – шляпных дел мастеров.
Наиболее ядовитыми соединениями ртути являются металлоорганические соединения ртути – они содержат связи ртуть – углерод. Впервые такие соединения были получены в 1852 году. Сэр Эдвард Франкланд обнаружил, что если оставить смесь метилйиодида (СH3I) с металлической ртутью на солнечном свету, то через некоторое время образуются кристаллы йодметилртути (СH3—Hg – I). Для пытливых: позднее этот и подобные ему процессы в металлоорганической химии получили название окислительное присоединение металла по связи X – Y; в ходе таких процессов и формальная валентность металла, и формальное значение увеличиваются на две единицы. Чуть позже Франкланд получил целый ряд таких соединений.
В начале ХХ века люди начали использовать ртутьорганические соединения в качестве фунгицидов для посевного сырья. Ртутьорганика убивала грибки, но и людей, пытавшихся делать хлеб из посевного фонда, тоже, в то время как высевание таких семян и использование в пищу уже урожая было безопасным. Тем не менее эпидемии ртутных отравлений в результате «потравы посевного фонда» случались с завидной регулярностью. Одна из последних таких эпидемий произошла в начале семидесятых годов в Ираке, когда люди не смогли прочитать предостережения на мешках с обработанным соединениями ртути посевным зерном из-за незнания испанского, и в результате этой фатальной ошибки сотни людей умерли от ртутного отравления. Токсичные органические производные ртути могут образовываться в природных условиях из неорганических соединений ртути – в природе анаэробные бактерии превращают ртуть в метилртуть, которая может по пищевой цепочке через планктон и рыбу доходить и до человека: одно из массовых отравлений ртутью в Японии связывают с тем, что недобросовестная химическая компания Чиссо решила избавиться от ртутных отходов и сбросила их в прибрежную зону, в которой осуществлялся коммерческий лов рыбы. По названию города, жители которого пострадали более всего, синдром отравления ртутьорганическими соединениями получил название болезнь Минамата. Симптомы включают нарушение моторики, парестезию в конечностях, ослабление зрения и слуха, а в тяжёлых случаях – паралич и нарушение сознания, завершающиеся летальным исходом.
Однако самым ядовитым производным ртути является диметилртуть (СH3—Hg – СH3). Впервые она была получена в 1858 году Джорджем Бактоном. В группе Франкланда диметилртуть начали получать в 1863 году. В 1865-м в ходе одного из экспериментов коллега Франкланда Карл Ульрих вдохнул немного полученного соединения и вскоре стал демонстрировать классические симптомы ртутного отравления – онемение конечностей, потерю слуха и зрения. Затем он на некоторое время стал буйным, а потом впал в глубокую кому, скончавшись через полмесяца после проявления симптомов. У молодого лаборанта, помогавшего Ульриху, и получившего меньшую дозу, симптомы развивались дольше, но и для него отравление закончилось буйным помешательством, которое развилось за несколько месяцев с последующей смертью от пневмонии в психиатрической лечебнице.
Отравление диметилртутью не является «приметой времени» химиков XIX века. Никто из работающих с органическими соединениями ртути от него не застрахован. В августе 1996 года профессор колледжа в Дартмунте Карен Веттерхан, опытный химик-металлоорганик, соблюдала все меры предосторожности, работая с небольшим количеством диметилртути – она выполняла все операции под вытяжкой в халате, очках и перчатках, но в процессе работы капнула пару капель реактива на перчатки. Капнула, утилизировала перчатки и забыла, вроде бы жизнь продолжала идти своим чередом. Однако в январе 1997 года она стала замечать тревожные симптомы – расстройство речи, потерю координации движений. В больнице ей поставили диагноз «отравление ртутью». Состояние химика ухудшалось, и терапия, призванная выводить из организма тяжелые металлы, в том числе и ртуть, не помогла (это только в «Хаусе» все проблемы больного после диагностики отравления тяжелыми металлами и фразы «Вводите лиганды и выводите тяжелые металлы!» все проблемы больного решаются, в жизни, увы, всё хуже). В феврале 1997 года, через три недели после первых симптомов отравления, Веттерхан впала в кому и умерла, не приходя в сознание, в июне. Несмотря на то что диметилртуть не попадала на кожные покровы, органическое окружение ртути позволяет этому «суперяду» проходить сквозь тонкие латексные перчатки.
Кстати, после смерти коллег Франкланда от отравления ртутьорганическими соединениями в 1865 году Джордж Бактон, впервые получивший диметилртуть, отошел от химии, перешел в энтомологию, стал изучать жучков и бабочек, что, возможно, и помогло ему дожить до преклонного возраста в 87 лет и умереть в 1905 году.
Не то чтобы ртуть и её производные были бы уж таким замечательным веществом, хотя без ртути у нас не было бы ни технологии изготовления зеркал, ни золоченых куполов, ни сумасшедшего шляпника. Тем не менее я от всей души желаю вам, чтобы вы поменьше контактировали с ртутью и избежали участи Карла II, Карла Ульриха, Карен Веттерхан и многих других.