bannerbannerbanner
Homo sapiens под микроскопом

Андрей Павлович Киясов
Homo sapiens под микроскопом

Полная версия

Царевна-яйцеклетка

Мы знаем, что половые клетки гоноциты сначала появляются в желточном мешке, а затем переселяются в половые железы. Женские половые железы называются яичниками, и в них из гоноцитов будут образовываться яйцеклетки (рисунок 19).


Рисунок 19. Женские половые железы

Когда на игровом поле присутствуют два игрока, сперматозоид и яйцеклетка, всегда возникает вопрос, кто из них ключевой игрок и без кого игра невозможна. В самом начале развития науки существовал дуализм мнений. В основе двух разных точек зрения была уверенность, что будущий человек или любое другое животное уже находятся внутри половой клетки в готовом виде. Торжествовал преформизм. Преформисты-анимакулисты считали, что маленький человечек, гомункулюс, находится в ядре сперматозоида. Их оппоненты – овисты – считали, что маленький человечек находится внутри яйцеклетки.

Если мы встанем на позиции овистов, то должны ли мы признать возможность непорочного зачатия, то есть зарождения новой жизни без участия сперматозоида?

«Дух Святый найдет на Тебя, и сила Всевышнего осенит Тебя» (Лука 1:35).

«…родившееся в Ней есть от Духа Святого» (Матфей 1:20).

Непорочное зачатие без участия сперматозоидов не только возможно, но и существует. Это явление называется партеногенез. Механизм партеногенеза до конца не понятен, но внешние воздействия на яйцеклетку без участия сперматозоида могут стимулировать развитие нового организма. Партеногенезом могут размножаться дафнии, тля, некоторые ящерицы, акулы и ряд других представителей животного мира. Все потомство в этом случае состоит только из особей женского пола, так как без сперматозоида неоткуда взяться мужской половой хромосоме. В России встречаются водоемы, где живут только самки серебряного карася, и это возможно благодаря партеногенезу. Долгое время считалось, что у млекопитающих партеногенез невозможен.

В 2004 году многие средства массовой информации сделали сенсационные заявления, что японские ученые смогли получить партеногенетических мышей. Проведенный эксперимент похож на классический партеногенез лишь результатом, когда в потомстве появляются только особи женского пола. На самом же деле было получено потомство от двух самок мыши, Яйцеклетка мыши-мамы была «оплодотворена» яйцеклеткой другой мыши. Мне трудно придумать ей название: вторая мама? или мама, которая папа? Но суть состоит в том, что в ядре яйцеклетки, которая играла роль сперматозоида, предварительно выключили работу одного из генов, который регулирует активность отцовских хромосом. Активность генов отцовских хромосом крайне важна и необходима, когда развитие идет естественным путем с настоящими мамой и папой. Об этом мы еще поговорим.

Сейчас же, отвечая на вопрос, кто главнее, яйцеклетка или сперматозоид, надо признать, что обе половые клетки важны, но яйцеклетка главнее. Еще одним доказательством этого являются пионерские работы нобелевского лауреата 2012 года сэра Джона Гёрдона. Он удалял из яйцеклетки лягушки гаплоидное ядро и вместо него помещал в яйцеклетку, но не в сперматозоид, диплоидное ядро из кишечника головастика. В результате из такой лягушачьей икры получались сначала головастики, а потом и лягушки. То, что сделал сэр Джон Гёрдон, называется клонированием.

Клонировать млекопитающих, в отличие от лягушек, оказалось намного сложнее. Но 22 февраля 1997 года мир узнал об овечке Долли. В Рослинском университете группа Яна Вилмута после слияния яйцеклетки и ядра соматической клетки получила знаменитую на весь мир овечку, которую Вилмут назвал в честь любимой им кудрявой кантри певицы Долли Партон, или просто Долли.

В чем же принципиальное отличие яйцеклеток от сперматозоидов? Главное отличие – это крупные размеры яйцеклетки. Яйцеклетки курицы – это яйца, которые мы с удовольствием едим на завтрак.

Красная, черная, щучья икра, икра минтая и любая другая икра рыб (но не кабачковая или баклажанная) – это тоже яйцеклетки. Во всех яйцеклетках есть запас питательных веществ. Всем хорошо знакомый желток – главный источник питания для развивающегося эмбриона.

Если все события развития нового организма происходят вне связи с организмом матери, от которой можно получить питательные вещества, то таким яйцеклеткам надо много желтка. По количеству желтка яйцеклетки подразделяют на полилецитальные (много), мезолецитальные (средне) и алецитальные (нет или очень мало). Лецитос (λέκιθος) – это название желтка по-гречески.

Еще одно различие связано с распределением желтка внутри цитоплазмы яйцеклетки. У птиц и рыб желток занимает практически весь объем яйцеклетки, смещая ядро под плазматическую мембрану. Практически все тело яйцеклетки – это желток, а такая яйцеклетка называется телолецитальная. У нас с вами и у других млекопитающих желток распределен равномерно – это изолецитальный тип яйцеклеток, а у насекомых желток расположен вокруг центрально лежащего ядра, то есть центролецитально.

Из всего разнообразия яйцеклеток нас интересует изо- и алецитальная яйцеклетка человека (рисунок 20).



Рисунок 20. Яйцеклетка

Как любая барышня на выданье, яйцеклетка не только крупна, но и красива. Вокруг плазматической мембраны у нее толстый блестящий «чепчик» – блестящая оболочка. Для пущей привлекательности и красоты на блестящей оболочке есть «корона» из фолликулярных клеток, которые она прихватила из яичника, где росла и готовилась к свиданью со сперматозоидом. Яйцеклетка, если встретит любимого, будет верна только ему одному. Поэтому кроме органоидов и желточных гранул у нее есть специальные гранулы верности, которые называются «кортикальные гранулы», так как они находятся под корой, то есть прямо под мембраной яйцеклетки.

В отличие от сперматозоидов, которые вспоминают о поисках царевны только после пубертата, яйцеклетки начинают думать о свадьбе и готовиться к ней еще до рождения девочки. У находящегося в утробе мамы плода-девочки в яичнике начинают делиться митозом женские гоноциты – овогонии. Из овогоний образуются первичные овоциты, которые начинают первое деление мейоза. В самом начале – профазе первого деления мейоза, когда центриоли разошлись по полюсам клетки, – первичные овоциты вдруг вспоминают, что рановато они начали готовиться к свадьбе. Поэтому они, покрытые «одеялом» из одного слоя плоских фолликулярных клеток яичника, «засыпают» до пубертата. Заснувшим в профазе первого деления мейоза овоцитам предстоит пройти метафазу (выстраивание хромосом по экватору), анафазу (расхождение хромосом с экватора к полюсам) и телофазу (разделение на две клетки) первого деления мейоза и четыре такие же фазы второго деления мейоза. Но это все произойдет только с момента наступления полового развития, то есть после 12–14 лет жизни.

Таким образом, все девочки, в отличие от мальчиков, рождаются с первичными овоцитами. Развитие яйцеклеток из первичных овоцитов начнется после пубертата.

С наступлением пубертата каждый месяц в яичниках пробуждается несколько первичных овоцитов (рисунок 21). Проснувшись, они продолжают начатый во внутриутробном развитии мейоз. Фолликулярные клетки, покрывавшие «спящую» яйцеклетку, тоже начинают делиться. Поэтому делящаяся мейозом яйцеклетка оказывается в центре многослойного клеточного фолликулярного шара, заполненного жидкостью. Такой шар называется Граафов пузырек в честь нидерландского анатома Ренье Де Граафа, впервые описавшего зрелые фолликулы яичника. Яйцеклетка так торопится на встречу с женихом-сперматозоидом, что, не дождавшись окончания второго деления мейоза, в его метафазе, «выпрыгивает» из Граафова пузырька в брюшную полость поближе к входу в маточную тубу – пещеру, ведущую в матку. Разорванный яйцеклеткой Граафов пузырек желтеет от злости и превращается в желтое тело. Но и это превращение не случайно. Все происходящие в яичнике события направлены только на одно – на продолжение рода человеческого.

Как вы думаете, что объединяет события, происходящие ежемесячно в яичнике женщины, с романом Михаила Афанасьевича Булгакова «Собачье сердце»? Не буду томить вас – это гипофиз, маленькая железа, находящаяся внутри черепа в гипофизиарной ямке турецкого седла в центре клиновидной кости. Именно эту железу профессор Филипп Филиппович Преображенский пересадил в мозг пса Шарика от погибшего пьяницы и дебошира Клима Чугункина.



Рисунок 21. Цикл яичника

Гипофиз – это очень крупный начальник, то есть самый главный среди эндокринных желез в нашей эндокринной системе. Железы эндокринной системы вырабатывают гормоны и регулируют работу органов нашего тела. Гипофиз – главный, так как он контролирует работу большинства эндокринных желез. Именно гипофиз запускает превращение мальчиков и девочек в мужчин и женщин, для чего он начинает вырабатывать два гормона, стимулирующих работу половых желез. Поэтому эти гормоны гипофиза называются гонадотропные гормоны, то есть гормоны, действующие на гонады – половые железы (рисунок 22).



Рисунок 22. Гипофиз и яичники

Один из этих гормонов называется фолликулостимулирующий гормон. Само название говорит о том, что он стимулирует рост фолликулов в яичнике. Второй гормон называют лютеинизирующий гормон, и под его влиянием на месте лопнувшего фолликула образуется желтое тело – corpus luteum. Выброс и концентрация гонадотропных гормонов зависят от количества в крови гормонов яичника. Растущие фолликулы вырабатывают эстрогены. Желтое тело вырабатывает прогестерон.

Гипофиз работает по принципу отрицательной обратной связи, или принципу унитазного бачка: чем больше в бачке воды, тем меньше в него поступает, а когда он полный, вода прекращает в него литься. Так и в работе гипофиза: если в крови много эстрогенов, то фолликулостимулирующего гормона вырабатывается мало, и наоборот, мало эстрогенов – много фолликулостимулирующего гормона. Такой принцип работы гипофиза характерен для всех его тропных гормонов.

 

Итак, для нормального развития нового организма нужны два вида половых клеток. Главными все-таки являются яйцеклетки, которые начали свои превращения еще до рождения девочки, «заснув» в профазе первого деления мейоза. Сперматозоиды же начинают образовываться только после пубертата, и в это время яйцеклетки тоже просыпаются. Хотя сперматозоиды начинают развиваться позже, они выходят из яичка полностью готовыми к выполнению своей важной миссии, а вот яйцеклетки покидают яичник в середине (метафазе) второго деления мейоза. Что же произойдет дальше и как встретятся двое влюбленных? Именно об этом пойдет речь в следующем рассказе.

В сухом остатке:

• Из яйцеклеток может развиться полноценный организм путем партеногенеза и клонирования без участия сперматозоида.

• Яйцеклетки разных организмов отличаются количеством и распределением желтка в цитоплазме.

• Яйцеклетки развиваются в яичниках.

• Девочки рождаются с первичными овоцитами в яичниках, которые находятся в профазе первого деления мейоза.

• Первичные овоциты окружены одним слоем плоских фолликулярных клеток.

• После пубертата ежемесячно несколько первичных овоцитов начинают превращение в яйцеклетку, а вокруг нее увеличивается количество фолликулярных клеток.

• На рост фолликула и образование яйцеклетки влияет фолликулостимулирующий гормон гипофиза.

• Чем больше фолликул, тем больше он вырабатывает эстрогенов.

• На пике концентрации эстрогенов в крови гипофиз выбрасывает лютеинизирующий гормон.

• Под действием лютеинизирующего гормона из зрелого фолликула (Граафова пузырька) в брюшную полость выходит яйцеклетка.

• Овуляция – это выход яйцеклетки из Граафова пузырька.

• Яйцеклетка не завершает второе деление мейоза в яичнике.

• В цитоплазме яйцеклетки, кроме желтка, есть кортикальные гранулы.

• На месте лопнувшего Граафова пузырька образуется желтое тело.

• Желтое тело вырабатывает гормон прогестерон.

• Яйцеклетка после овуляции окружена блестящей оболочкой и слоем фолликулярных клеток.

Когда же я начал жить? (Оплодотворение, или Счастливая встреча сперматозоида с яйцеклеткой)

Первым условием для развития любого человека является встреча и слияние сперматозоида и яйцеклетки. В результате из двух гаплоидных половых клеток получается диплоидная оплодотворенная яйцеклетка, или зигота.

Вы помните, что яйцеклетка не может самостоятельно двигаться и не яйцеклетки бегают за сперматозоидами, а сперматозоиды стремятся к яйцеклетке. Не женское это дело – навязываться кавалерам. Поэтому, выйдя из фолликула, украшенная тяжелой короной из фолликулярных клеток, она надеется на чудо, то есть на встречу с женихом-сперматозоидом. Чтобы добраться до малоподвижной и вальяжной яйцеклетки, сперматозоидам предстоит пройти сложный путь. Из уретры полового члена они попадают во влагалище. Затем они должны пройти через слизистую пробку в узком канале шейки матки, проплыть по всей длине полости матки, а затем через маточные трубы добраться до яйцеклетки (рисунок 23).



Рисунок 23. Путешествие сперматозоида

Чтобы стать счастливчиком, каждый из 250 миллионов сперматозоидов должен решить три задачи. Первая – это найти яйцеклетку. Вторая задача – это не спутать ее с другими клетками, которые встретятся на его пути. На русских свадьбах жениху иногда предлагают решить такую же задачу. Когда он приезжает в дом родителей невесты, его проводят в комнату, где в свадебных нарядах сидят несколько «невест». Лица их закрыты фатой. Задача жениха – найти настоящую невесту, а не выбрать сестру или бабушку невесты. Третья задача сперматозоида – устранить конкурентов, чтобы яйцеклетка стала его, и только его избранницей.

Как же сперматозоид решает первую задачу и находит яйцеклетку? Оказывается, по запаху, или, если сказать по-научному, по хемотаксису. У сперматозоидов в хвостике есть специальные обонятельные рецепторы. Именно этими рецепторами сперматозоид унюхивает хемоатрактанты, привлекающие, притягивающие его химические вещества, которые вырабатывает яйцеклетка и фолликулярные клетки. Поэтому сперматозоиды, как собаки-ищейки, двигаются по запаху.

Почему сперматозоид не путает яйцеклетку с другими клетками и прилипает только к нашей гаплоидной красавице? Яйцеклетка кроме плазматической мембраны, такой же, как у всех других клеток, имеет наружную блестящую оболочку (zona pellucida), в которой есть уникальные белки – ZP-белки зоны пеллюцида. Один из них, под номером три (ZP3), необычайно привлекателен для сперматозоидов, так как на головке сперматозоида есть специальный рецептор, который прочно связывается с этим белком блестящей оболочки (рисунок 24).



Рисунок 24. Взаимодействие сперматозоида с блестящей оболочкой яйцеклетки

Связывание рецептора на головке сперматозоида с белком ZP3 – это не просто прилипание, это сигнал для акросомы сперматозоида к выделению ферментов. Выделение ферментов из акросомы – это начало акросомальной реакции. Ферменты акросомы делают в блестящей оболочке отверстие. Через дыру в блестящей оболочке головка сперматозоида подходит к мембране яйцеклетки (рисунок 25).



Рисунок 25. Акросомальная реакция

Как только головка сперматозоида проникла через отверстие в блестящей оболочке, мембрана головки сперматозоида контактирует с плазматической мембраной яйцеклетки. Этот контакт – как первый поцелуй жениха и невесты. Яйцеклетка во время этого поцелуя выбрасывает из себя кортикальные гранулы. Выброс кортикальных гранул, или кортикальная реакция, – это обет верности яйцеклетки ее первому и единственному сперматозоиду. Содержимое кортикальных гранул попадает в перивителлиновое пространство, то есть в щель между плазматической мембраной яйцеклетки и блестящей оболочкой, и изменяет структуру белков блестящей оболочки. Блестящая оболочка становится непроходимой для других сперматозоидов (рисунок 26).




Рисунок 26. Кортикальная реакция и встреча мужского и женского пронуклеусов

Все описанные события – это биологический пересказ «Сказки о мертвой царевне и о семи богатырях» Александра Сергеевича Пушкина.

Давайте вместе ее вспомним.

Братья милую девицу

Полюбили. К ней в светлицу

Раз, лишь только рассвело,

Всех их семеро вошло.

«Взять тебя мы все бы рады,

Да нельзя, так, бога ради,

Помири нас как-нибудь:

Одному женою будь».

В нашей «сказке» братьев не семеро, а 250 миллионов!

«Для меня вы все равны,

Все удалы, все умны,

Всех я вас люблю сердечно,

Но другому я навечно

Отдана. Мне всех милей

Королевич Елисей».

Если бы это сказала яйцеклетка, то она бы явно поторопилась. Рано делать такие заявления, если еще не произошла кортикальная реакция. А реакция эта начинается только после прохождения одного из сперматозоидов через блестящую оболочку. Пока на это даже намека нет, значит, такое заявление со стороны яйцеклетки может быть обусловлено тем, что богатыри-сперматозоиды не одного с нами вида, то есть не Homo sapiens, и яйцеклетка понимает, что продолжение рода невозможно.

Теперь поговорим про царевича (рисунок 27).

За невестою своей

Королевич Елисей

Между тем по свету скачет…

Четкое совпадение, только он скачет и днем и ночью, а у нас все происходит в темноте, где из влагалища сперматозоид проходит в матку через канал шейки матки, где света, в общем-то, и нет.

Перед ним гора крутая,

Вкруг нее страна пустая,

Под горою темный вход.

Он туда скорей идет.

Перед ним во мгле печальной

Гроб качается хрустальный,

И в хрустальном гробе том

Спит царевна вечным сном…

Если мы переведем это на биологический язык, получится, что перед ним – крутое восхождение в гору по стенке матки, а потом темный ход – маточные трубы. В конце трубы на одной из бахромок ампулы маточной трубы лежит яйцеклетка. Гроб хрустальный – это блестящая оболочка. «Спит царевна вечным сном» – это гипербола, так как мы знаем, что сон этот не вечный и что застыла яйцеклетка в метафазе второго деления мейоза, и без сперматозоида она не сможет закончить мейоз, то есть проснуться.

Еще одно важное замечание. В сказке Александр Сергеевич не пишет о том, что, когда царевич путешествовал в поисках невесты, на его голове был шлем, а когда он подошел к гробу, то шлема у него уже не было. Великий русский поэт об этом не пишет, но на иллюстрациях к сказкам мы это видим. Что это значит? Помните, я рассказывал, что для защиты головки сперматозоида в придатке яичка он получил шлем из гликопротеинов? Сперматозоид теряет свой шлем во время путешествия по матке и маточной трубе. «Потеря» шлема называется капацитация. Если не «снять» шлем, то рецептор ZP3 не сможет приклеиться к белку ZP3, а это значит, что не будет акросомальной реакции. Короче говоря, в итоге ничего не произойдет.

И о гроб невесты милой

Он ударился всей силой.

Гроб разбился. Дева вдруг

Ожила. Глядит вокруг

Изумленными глазами

И, качаясь над цепями,

Привздохнув, произнесла:

«Как же долго я спала!»

И встает она из гроба…

Ах!.. и зарыдали оба.

Здесь даже пояснять ничего не надо. После проникновения через блестящую оболочку – хрустальный гроб – и контакта сперматозоида с яйцеклеткой она просыпается и завершает мейоз. Ядро сперматозоида проникает внутрь яйцеклетки. Два влюбленных гаплоидных ядра (мужской и женский пронуклеусы) сливаются, и образуется зигота. Так зародилась новая жизнь, и зарыдали царевна и царевич от счастья.



Рисунок 27. Сперматозоид в роли Королевича Елисея

Теперь представьте себе, что у царевича пропал конь или он подвернул ногу. Такие царевичи не могут пройти через канал шейки матки и взобраться на крутую гору, чтобы подойти к пещере маточных труб. Что же делать? Вызываем волшебника-инсеменатора. Он собирает всех царевичей в шприц и через трубку доставляет их прямо к пещере в полость матки. Искусственная инсеменация – это не волшебство, а вспомогательные репродуктивные технологии, то есть технологии, помогающие размножению.

Искусственная инсеменация очень часто используется в животноводстве. Молоко дают коровы, но не быки. Значит, надо, чтобы в потомстве были только тёлочки. Как это сделать? Отбираем только сперматозоиды с женской половой хромосомой и только их вводим в полость матки коровы. Такие сперматозоиды тяжелее, так как в них большая Х, а не маленькая мужская половая хромосома. Конечно, при искусственной инсеменации папа-бык не очень доволен, так как он является только источником сперматозоидов, не видит красавицу-корову и не участвует в процессе оплодотворения. Но его мнение и не является определяющим. Главное, что хозяин быка и коров получает только телочек и развивает свой молочный бизнес (рисунок 28).



Рисунок 28. Искусственная инсеминация

Не всегда даже искусственная инсеменация может помочь сперматозоидам добраться до яйцеклетки. Если «пещера» завалена камнями, то через нее не пройти, поэтому при непроходимости маточных труб нужны другие волшебники и другие волшебные технологии.

Имя главного современного волшебника – Роберт Эдвардс. Этот британский ученый, нобелевский лауреат 2010 года, разработал поистине фантастическую технологию получения детей в пробирке. В июле 1978 года появился первый в мире ребенок из пробирки – Луиза Браун. Волшебство, придуманное Робертом Эдвардсом, называют экстракорпоральным оплодотворением, то есть оплодотворением вне тела мамы. И в мире сейчас живут тысячи детей, зачатие и первые дни жизни которых прошли за пределами тела мамы.

 

Самый простой вариант волшебства в пробирке называется просто ЭКО, или экстракорпоральное оплодотворение. Во время ЭКО в пробирку помещают яйцеклетку, полученную из яичника мамы и сперматозоиды папы. Сперматозоиды предварительно заставляют поплавать в бассейне, в который добавлена жидкость из половых путей мамы. Это нужно, чтобы снять шлем с головки сперматозоидов. Вы помните, что это называется капацитация. Весь дальнейший процесс встречи яйцеклетки и сперматозоида ничем не отличается от того, что происходит в маточных трубах. Иногда сперматозоиды не могут повторить все события даже в идеальных искусственных условиях пробирки. Тогда берут головку одного из сперматозоидов и очень тонкой пипеткой вводят ее прямо внутрь яйцеклетки. Такое волшебство называется интрацитоплазматическая инъекция сперматозоида (ИКСИ – IntraCytoplasmic Sperm Injection, ICSI, рисунок 29).



Рисунок 29. ЭКО и ИКСИ

Волшебство, придуманное Робертом Эдвардсом, открыло новые перспективы для семей, в которых женщина больна или является носителем митохондриального заболевания. В случае многих наследственных заболеваний всегда есть шанс не получить «больной» ген, или здоровый ген одного из родителей не даст проявиться болезни. Однако в случае митохондриальных болезней у мамы шанса на удачу и везение нет. Мы все получаем свои митохондрии только от мамы. Так как же помочь парам, в которых у женщины есть митохондриальная болезнь, родить здорового ребенка? Надо позаимствовать яйцеклетку у женщины со «здоровыми» митохондриями, удалить из нее ядро и вместо него поместить ядро яйцеклетки будущей мамы. Далее проводят известную вам процедуру ЭКО, в результате которой образуется зигота из клеток трех родителей (рисунок 30). Наследственная информация в ядре – от мамы и папы, а в митохондриях – от здоровой женщины-донора. Так что поговорка – «третий лишний» не всегда верна.



Рисунок 30. Ребенок от трех родителей

Счастливая встреча сперматозоида и яйцеклетки – это начало длинного путешествия под названием жизнь, и первые девять месяцев мы провели внутри мамы. Что мы там делали и как из одной-единственной клетки появился человек, вы узнаете в следующих рассказах.

В сухом остатке:

• Сперматозоид двигается к яйцеклетке по хемотаксису.

• Во время движения по половым путям женщины происходит капацитация – удаление гликопротеинов с поверхности головки сперматозоида.

• Для инициации акросомальной реакции необходимо взаимодействие рецептора на головке сперматозоида с белком ZP3 блестящей оболочки яйцеклетки.

• Во время акросомальной реакции ферменты акросомы растворяют участок блестящей оболочки яйцеклетки для прохождения головки сперматозоида.

• Взаимодействие мембраны головки сперматозоида с мембраной яйцеклетки запускает кортикальную реакцию, и яйцеклетка завершает мейоз.

• Кортикальная реакция – это освобождение содержимого кортикальных гранул в пространство между мембраной яйцеклетки и блестящей оболочкой (переветилиновое пространство).

• В результате кортикальной реакции меняется структура блестящей оболочки, и через нее не могут пройти сперматозоиды.

• К вспомогательным репродуктивным технологиям (ВПР) относят искусственную инсеменацию, экстракорпоральное оплодотворение и интрацитоплазматическую инъекцию сперматозоида.

• Зигота образуется после слияния мужского и женского пронуклеусов.

1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29 
Рейтинг@Mail.ru