Одна из неправильных идей состоит в том, что можно иметь сильный общий интеллект, в том числе развить у себя системное мышление – и иметь огромное преимущество перед профи в своих предметных областях. Грубо говоря, вы станете очень умным, а затем будете иметь преимущество перед, например, более глупым пианистом или даже сварщиком. Увы, это не сработает. Человек с системным мышлением будет иметь перед профи преимущество в том, с какой скоростью он разберётся в проекте в целом, как быстро договорится с остальными участниками проекта, насколько сможет удерживать внимание на главных задачах проекта и не увлекаться чем-то не слишком важным в ходе работы. А ещё он сможет быстро чему-то научиться. Но у него не будет немедленного преимущества в решении прикладных задач! Никакое системное мышление не поможет вам сразу начать играть на скрипке, или пользоваться сварочным аппаратом, или даже ставить медицинские диагнозы, если вы этим никогда не занимались. Не сразу – да, обучитесь всему этому быстрее, но вот просто стать умным и считать, что это даёт преимущество в какой-то прикладной дисциплине перед профи в этой дисциплине – это ошибка. Если вы станете профи в этой прикладной дисциплине, то будете больше профи, чем ваш менее умный коллега. Но если не станете профи – будете «вообще умным», «вечно переспективным».
Более того, ошибки в системном мышлении могут появиться из-за игнорирования самых разных трансдисциплин интеллект-стека. Если вы хорошо разобрались с тем, как строить иерархию по отношению композиции, но плохо понимаете отношение классификации, вам системное мышление не поможет, ошибки в мышлении будут по другим причинам, вам нужно будет доразобраться с онтологией (например, перепройти пройти курс «Моделирование и собранность», который пререквизит к нашему курсу системного мышления).
Системное мышление не заменяет прикладных/предметных рассуждений, равно как не гарантирует хорошего мышления по всем фундаментальным методам мышления интеллект-стека. Например, системное мышление не гарантирует рациональности: не факт, что если вы мыслите системно, то вы обязательно будете принимать хорошие решения, пользоваться современной теорией решений!
Для того, чтобы видеть ошибку в «2*2=5», нужно по-прежнему знать арифметику, никакое системное мышление тут не поможет. Если вы не умеете ремонтировать унитазы, а вам это потребовалось, то вам поможет не курс системного мышления, вам поможет учебник сантехники. Но системное мышление усиливает, направляет и дополняет прикладные рассуждения, а также рассуждения в рамках фундаментальных методов мышления. Например, системное мышление поможет выбрать современный/лучший учебник сантехники из многих имеющихся, разобраться в ситуации ремонта унитаза в целом. Вдруг унитаз этот вообще не нужно ремонтировать, а проблема в чём-то другом: унитаз тут «симптом», а не «болезнь»! Но фундаментальное системное мышление не заменит прикладного сантехнического мышления. Обучение по инженерии систем-унитазов придётся-таки получить, освоить прикладной инженерный метод/культуру/практику этой работы, то есть получить знания сантехники как учебной дисциплины/объяснений, в том числе знания по использованию тамошнего инструментария (например, знание о том, как использовать разводной ключ, трос с ершом для прочистки труб, пробивные штанги с разнообразными насадками для разных типов засора).
Если вы собираетесь решать задачи какой-то прикладной предметной области без знания SoTA (state-of-the-art, лучшее на сегодня известное знание) методов работы в этой предметной области, опираясь только на смекалку и сообразительность, то мы назовём это кулибинством19. Кулибинство – это народное изобретательство, без опоры на современные методы работы с их современными знаниями и задействованием современного инструментария. Кулибинство – этото что-то типа знахарства, только в инженерии.
Иногда кулибинство срабатывает и даёт «работоспособную систему», но в серию на рынок такую систему не выпустить. «Работоспособная система» по итогам кулибинства – это необязательно лучшая в своём классе по характеристикам, надёжная, дешёвая в эксплуатации и готовая к массовому выпуску. Нельзя игнорировать достижения человеческой культуры, считать, что «творчество» – это когда ты всё сам придумываешь. Вопрос в том, что качественное творчество должно быть чем-то заведомо лучше, чем уже имеющиеся варианты. Поэтому о имеющихся вариантах инженерных идей нужно как минимум знать, чтобы иметь возможность сравнить свои придумки с уже имеющимися в культуре.
Нужно как минимум гуглить прикладное знание/объяснения, спрашивать его у интеллектуальных ассистентов и со-пилотов. Ещё лучше – освоить прикладной метод работы из учебника, ещё надёжней – закончить учебные курсы по прикладному методу. Профессионал – это тот, кто не делает новичковых ошибок (знает о них!), а не тот, кто вообще много знает20.
Плохо действовать всегда методом проб и ошибок, уповая на «свободу творчества» и приговаривая «некогда исследовать вопрос, некогда учиться, работать надо». «Изобрести что-то на коленке» – это ж и есть «попробовать, вдруг получится», такой метод техно-эволюции в конечном итоге очень дорог, разве только у вас миллионы лет в запасе, как у природной эволюции. Конечно, метод проб и ошибок в инженерии используется, в инженерии он признан, но он не главный. Если бы метод кулибинства был главным, то инженерам не нужно было бы образования.
Системный мыслитель – это не тот, который игнорирует учебники, стандарты, регламенты по прикладным методам работы. Совсем наоборот: это тот, кто может быстро выбрать необходимый учебник или найти современный стандарт работы, разобраться в их содержании, учесть особенности текущей ситуации с задействованием всех других прикладных методов работы в сложном командном проекте. Системное мышление помогает прикладному мышлению, а не заменяет его.
Есть разные мнения о том, можно ли называть прикладное мышление (например, мышление инженера-разработчика ракетной техники, или ведение обучения людей с использованием педагогического метода blended learning, или ремонт унитазов на космических кораблях) мышлением. По одному мнению – конечно, агенты всегда мыслят, но согласно другому мнению, мышление – это только функция порождения нового прикладного метода с его знаниями/дисциплинами как потенциальными алгоритмами изменения мира для ситуациями встреченной проблемы и инструментарием для этих изменений, а вот для вычислений/рассуждений прикладными методами собственно мышления уже не требуется, эти рассуждения идут «автоматом». Работу калькулятора не называют «мышлением», он считает что-то «аппаратно», и всё. По другому мнению (которого придерживаемся и мы) в ситуациях прикладного метода (даже работы калькулятора, например, ребёнка, мучительно умножающего трёхзначные числа в в столблик на бумаге) мы всё-таки будем говорить о прикладном мышлении. В какой-то заданной прикладной предметной области можно хорошо понимать, что делать в типовой ситуации – и делать «на автомате», не задумываясь о методе работы, «не думать». Но в этой прикладной предметной области может быть очень много объектов, так что надо будет:
• составить самостоятельно какой-то метод решения (объяснения/знания/алгоритмы и инструменты в их поддержку) конкретной проблемной ситуации, конкретного затруднения, даже не выходя за пределы конкретной предметной области (иногда составление метода для какой-то проблемной ситуации называют стратегированием, а найденный метод – стратегией),
• затем спланировать работы (метод – это только способ выполнения работы, стратегия не предусматривает плана с проставленными в нём сроками работ и ресурсами), исходя из наличных или ожидаемых ресурсов (а если ресурсов не хватает, то откорректировать метод, заменив таким, для которого ресурсов хватит, или предусмотреть работы по каким-то методам добычи нужных ресурсов), а
• затем только выполнять работы по этому методу-стратегии, и ещё
• отслеживать, удовлетворяют ли результаты выполняемой работы, или надо срочно адаптировать метод, поскольку или ситуация с исходными данными или требуемыми результатами изменилась, или были ошибки в предыдущих шагах.
То есть для элементарных каких-то операций/действий в мире мышления вроде не надо, а мышление нужно для выбора какой-то объяснимой цепочки действий (это и есть метод) подлиннее, когда требуется учитывать много привходящих обстоятельств, удерживать внимание на огромном числе объектов, меняющихся на каждом шаге следования методу работы – и вот тут мы склонны говорить о прикладном мышлении, а не просто об автоматическом выполнении отдельных операций. Ударить молотком, то есть просто двинуть мышцами молоток – большого ума не надо, но вот чтобы ударить безопасно, в нужное время, в нужное место – вот для этого мышление уже надо, надо как-то обсудить метод ударов молотком, знания/дисциплины и инструментарий этого метода.
Cразу освоить прикладное мышление для решения проблем/затруднений в рабочей предметной области, да ещё потом и сочетать эти разные прикладные мышления для разных методов работы в сложных проектах, в которых задействованы сотни людей, не удаётся. Но и после освоения узкого прикладного мышления по одному методу надо признать, что без опоры прикладного знания на фундаментальное/трансдисциплинарное знание хорошо действовать в реальном мире не получится. На стыках работ по любым прикладным методам будут встречаться ситуации, не описанные ни в одном учебнике, ни в одном регламенте или стандарте работы! Люди просто обязаны использовать фундаментальные знания/объяснения человеческой цивилизации, ибо только они позволяют связать в мышлении между собой как знания разных прикладных методов, так и знания о работе на цивилизационном фронтире: решении проблем, методы типовых решений для которых ещё никто на Земле не выработал, поэтому эти решения нельзя вот так просто взять и нагуглить, понять – и затем применить не думая. Хотя можно спросить метод решения проблемы у AI, но не факт, что этот AI будет достаточно умным, чтобы выдать что-то толковое (спросите AI сегодня: как стать бессмертным? Не факт, что получите в ответ описание какого-то подходящего метода решения этой проблемы).
Если мы хотя бы частично что-то знаем о структуре мира, это на несколько порядков уменьшает количество вычислений интеллекта/объем мышления в неполностью известных нам предметных областях. Это много? Скажем, какую-то проблему P мы можем решить человеческим мозгом за десять тысяч лет. Это побольше, чем время существования человеческой цивилизации, хотя вы можете сократить это время до десяти лет, если будет работать тысяча мозгов, а у вас есть ресурсы для поддержания жизни тысячи человек, и ещё вы знаете, как организовать эффективно разделение работ на тысячу человек. Так что лучше сделать какие-то не случайные, а уже известные цивилизации предположения о структуре задачи и её предметной области. В нашем примере проблемы P они позволят снизить объем вычислений одного мозга в десять тысяч раз, задача будет решена одним человеком за год. На кону примерно такая разница между скоростями работы необразованных людей и образованных: необразованные люди (дикари) знают мало общих объяснений об устройстве мира, а образованные – много. Надо учиться, чтобы быстро решать задачи собственным мозгом. Вариант: надо учиться, чтобы сдвинуть этот объём вычислений на мозги других людей и на компьютерные инструменты (включая AI).
Цивилизация при помощи науки с её опорой на письменное накопление объяснений/теорий/знаний/моделей даёт нам в готовом к изучению виде догадки об устройстве мира, а также учит формулировать проблемы (которые не знаешь как решить, предмет работы интеллекта) и переводить их в задачи (которые известно как решать, предмет работы прикладного мастерства). Эти догадки и лежат в основе образования. Образование – это усиление возможностей интеллекта путём обучения методам мышления интеллект-стека. Образование тем самым – это специализация обучения (образование::обучение). Напомним: обучение – это метод создания мастерства выполнения работ по целевому методу, которому учат. Образование даёт возможность быстрее находить прикладные методы по преобразованию проблемы в задачи, т.е. переводить ситуацию «не знаю как к такому подступиться» в ситуацию «знаю, по какому методу надо работать, чтобы получить результат – какие использовать знания и инструменты».
Приобретённый в ходе образования интеллект::мастерство позволяет решать проблемы в десятки тысяч раз быстрее, чем это могло бы быть сделано необученным структуре окружающего мира естественным врождённым интеллектом homo sapiens. Цивилизованный мозг – это не «дикий», это обученный мозг, он быстр в мышлении, а современный мозг ещё и использует мозги других людей (коллективная мыслительная работа) и компьютеры (классические и с программами AI) для усиления скорости своего мышления. При этом компьютеры могут быть использованы в минимальных вариантах даже не за счёт компьютерных вычислений, а просто за счёт помощи в организации памяти и удержании внимания. Компьютер как «ручка-бумажка» тоже крайне эффективен для мышления! Умный и ленивый образованный человек с ноутбуком может сделать много больше, чем толпа деятельных, но необразованных дураков-дикарей!
Освоение нового мастерства идёт у человека не через «природную смекалку», а через «облагороженную образованием смекалку», через знания/модели/объяснения/теории/дисциплины о структуре мира, структуре проблем и задач, а также знания/объяснения/дисциплины о том, какие доступны инструменты (например, компьютеры как универсальные моделеры для системного моделирования самых разных объектов).
Всё то же самое относится и к AI. Изготовленные на заводе компьютеры для AI тупы, они могут выполнять только простейшие операции типа перемножения матриц. А вот после обучения на огромном объёме знаний, уже накопленных в письменном виде цивилизацией, в этих компьютерах появляется мастерство рассуждений на основе этих знаний, «большие языковые модели/large language models/LLMs», которые иначе называют «фундаментальными моделями/foundation models», имея в виду как раз их трансдисциплинарный характер. Это аналог «образования»: обучение мышлению и каким-то инженерным кругозорам. А потом такие фундаментальные модели легко или дообучать прикладным знаниям (finetune) или подключать к таким моделям прикладные знания в виде каких-то инструментов (скажем, подключать Wolfram Mathematica для решения математических задач).
Умение и навык, скилл – это отсылки к владению агентом мастерством исполнения работы по какому-то методу, опирающемуся на теорию/знание/объяснения/алгоритм/дисциплину, причём выполнение этого метода/способа работы поддержано каким-то инструментарием. Интеллект – это мастерство владения набором фундаментальных методов мышления, нужных для самого обсуждения методов в условиях, когда непонятно, какой метод применить (возможно, такого метода ещё нет – или нет знаний, или нет инструментария, их нужно ещё создать).
Интеллект::мастерство работает с прикладными методами (и тем самым их знаниями/дисциплинами/алгоритмами/теориями) как объектами своей работы. Можно сказать, что интеллект как мастерство фундаментального мышления как раз создаёт и дальше развивает прикладные методы, он как раз нужен для познания, для бесконечного роста знаний (эволюции знаний) и инструментария поддержки работы с этими бесконечно растущими знаниями. Больше знаний и поддерживающего эти знания инструментария – больше перевода всё самых разных проблем в задачи. Инфекционные болезни были проблемой, но вот знание о микробах и мыло в качестве инструментария с методом гигиенического мыться рук в существенной мере решили эти проблемы, борьба с инфекциями стала набором задач, а не проблемой: известно, что делать, надо только найти ресурсы, и дальше просто делать.
Интеллект в его врождённой части позволяет людям быть умней кошек и обезьян, а вот в полученной образованием/выученной его части – это полученная образованием машинка по получению прикладных дисциплин. Интеллект – это эволюционно полученный людьми инструмент познания, машинка по разработке способов решения проблем – превращения проблем, которые не решаются никаким известными методами в выполняемые/решаемые известными прикладными методами задачи. Это относится и к естественному интеллекту, и к искусственному, и к гибридному, и к коллективному.
Трансдисциплины/«фундаментальные дисциплины» – это и есть объяснения/теории/знания/модели/алгоритмы по поводу устройства мира. Они удобны для скоростного мышления о мире, удержания внимания на вычислениях/рассуждениях/мышлении о важном, сохранении ресурса мозга или компьютера от разбазаривания на мышление о неважном. А само это мышление по знаниям/алгоритмам трансдисциплин затем нужно для создания методов изменения мира к лучшему.
То, что занимает у очень смекалистого дикаря полжизни, у обученного фундаментальным дисциплинам человека может занять несколько часов, или даже несколько секунд – особенно, если учитывать, что знания/алгоритмы методов мышления включают в себя и знания по задействованию инструментария мышления (чаще всего это моделеры). И то же относится к компьютерам с AI, только у этих компьютеров нет биологических ограничений по скорости и объёму вычислений для одного агента, почему их и боятся примерно так же, как в голливудских фильмах боятся гениальных учёных-злодеев.
Интеллект – это мастерство беглого задействования целого стека/stack/стопки/слоёного пирога поддерживающих друг друга фундаментальных методов мышления. Этот набор методов мышления (опирающихся на задействование фундаментальных дисциплин и использование инструментария их поддержки) мы называем интеллект-стеком.
В фундаментальных методах мышления дисциплины/теории/знания будут только «алгоритмической» частью. Мы эти дисциплины/теории/знания смело будем считать ещё и «алгоритмами» (описаниями задействования метода в самых разных обстоятельствах/ситуациях – ровно как алгоритмы могут быть использованы для вычислений с самыми разными входными данными):
• Есть множество указаний на то, что конструктивная математика – это по факту переход от декларативных (объекты и отношения) описаний к описаниям через операции построения объектов. Это можно распространить на всю работу с понятиями (ментальными/математическими объектами).
• В компьютерной науке давно получены результаты, которые позволяют рассматривать самые разные виды представления алгоритмов, а не только «пошаговое выполнение императивных программ» (в том числе соответствие Curry-Howard21 между императивным алгоритмом и набором логических высказываний). Мы достаточно широко трактуем этот результат.
• Надо рассматривать не знания сами по себе, а то, что с ними делает вычислитель – в данном случае это мастерство выполнения метода, использующего знания для вычислений (мышление) или даже изменения мира (мышление и задействование инструментов). В теории создателей (constructor theory)22 проводится обобщение понятия «алгоритм» на описание преобразований не только информации и сверхинформации (superinformation, в квантовых компьютерах, представленной не в битах, а кубитах), но и теоретически любых физических преобразований.
Методы мышления, как и любые другие методы, используют не только понятия из теорий/знаний/объяснений/алгоритмов/дисциплин (в том числе трансдисциплин), но и инструментарий, понимаемый как набор расширяющих возможности тела агента инструментов/аппаратуры/оборудования. В случае трансдисциплин мышления инструментарием обычно будет моделер (простейший из ручки-бумаги, или программа какого-то моделирования для компьютера), а расходным материалом к моделеру идёт кофе для человека-модельера и электроэнергия для компьютера, воплощающего модель. Другие инструменты в фундаментальных методах мышления интеллект-стека редки, хотя бывают. Например, в понятизации используется тело, там ищутся какие-то ощущения, которые потом надо будет перевести в мысль, роль исполнителя метода понятизации – «поэт».
Несмотря на практичный характер мышления, интеллекту больше нужно моделировать мир, то есть заниматься познанием/cognition/learning, созданием моделей, нежели непосредственно его менять в действии – но помним, что это модели, как раз нужные для изменения себя и мира к лучшему, причём интеллект принимает в случае затруднений решения о том, менять ли модель мира, модель себя, себя или мир – причём взаимозависимо.
В целом мышление как познание происходит в конечном итоге методом деятельных проб и ошибок, то есть не только высказыванием «умственных» догадок-объяснений и их умственной же критикой, а «активным зондированием» физического мира, деланием догадок и наблюдением результатов – получилось или нет. Это происходит даже по поводу того, где граница между самим агентом и окружением – чем можно просто командовать, на что можно существенно влиять, на что можно влиять несущественно, на что не удаётся пока влиять. Агент непрерывно что-то делает с окружающей средой, чтобы понимать границы своего влияния – и менять среду к лучшему (для себя ли, для своих генов, для популяции – это отдельный вопрос).
В случае перехода к прикладной инженерии (как изменению мира) методом «проб и ошибок» в старой и известной для этого агента или даже новой малоизвестной агенту предметной области, для изменения мира агент задействует изобилие самого разного инструментария и применяет самые разные исходные материалы: станки, химические реагенты, дрессированных животных, солнечный свет, воду в пруду, часы, балетный станок, квантовый компьютер, и т. д.
Есть некое лукавство в том, что мышление по фундаментальным методам – это чисто «ментальный акт». Ввод-вывод в вычислитель (например, мозг у людей) вполне материальны и требуют инструментария/оборудования (книгопечатание, электронные онлайн-курсы, мессенджеры для получения проблем и отправки решений), да и сам вычислитель вполне физический объект. Как любит напоминать Дэвид Дойч, математик и астрофизик – вполне себе физические объекты, «умственный труд» требует физичности трудящегося! В курсе мы используем понятие «создатель», который является обобщением компьютера, способного выполнять алгоритм вычисления на систему-создателя/constructor из constructor theory, который способен выполнять знания/алгоритм метод как «алгоритм изменения физического окружения»23.
Метод работы, выполняемый создателем включает знаниевую часть (которую программно-аппаратно реализует в создателе мастерство выполнения алгоритмов/объяснений/теорий метода) и аппаратную часть (мастерство в его поддержке телом агента можно тоже отнести к этой аппаратной части, а дальше идёт аппаратура инструментов как датчиков и актуаторов, а также «экзотела» как платформы для всех этих датчиков и актуаторов, то есть оборудование/аппаратура, которые помогают мастерству делать дополнительные вычисления и действия по измерениям в физическом мире и изменениям физического мира). Для универсальных создателей (интеллектуальных агентов) можно говорить не просто о вычислениях, а сразу о мышлении, а также рассматривать ситуации, когда в ходе выполнения метода создатель сначала строит дополнительную аппаратуру – инструментарий (раскрутка/bootstrapping).
Constructor theory даёт обобщение для понятий
• алгоритма (термин остаётся тем же) как описаний/теории/дисциплины,
• измерения (ввод, физическое взаимодействие для получения данных)
• изменения (обработка/processing в случае информации, в случае вещества – transformation)
• вывода (в случае создателей отдельно эта операция не рассматривается, включается в transformation)
Так что можно дальше обсуждать преобразования не только информации, но и физических объектов, а также понятие вычислителя/computer, реализующего «обработку информации по какому-то алгоритму»::метод расширять до понятия создателя/constructor, реализующего «преобразование физического мира по какому-то алгоритму»::метод.
Универсальный компьютер при наличии достаточных вычислительных ресурсов (памяти и времени) может принципиально выполнить любое вычисление, которое может выполнить машина Тьюринга (известная нам теория компьютинга), а вот универсальный создатель с учётом раскрутки/bootstrapping (например, начиная с выплавки металла из руды, получение чистого кремния для полупроводника из песка) принципиально при наличии достаточных ресурсов (памяти, времени, начального набора инструментов) может выполнить любое преобразование вещества – и «любое» понимается как в математике, речь тут идёт о теоретической возможности. Практическая же возможность будет ограничена ресурсами и рисками какой-нибудь катастрофы (скажем, прилетает астероид и уничтожает создателя, который имеет все необходимые ресурсы – и он не успевает закончить свою работу.
При этом особо подчёркивается, что по одному методу (алгоритм/теория/объяснения/знания и аппаратура/инструменты) создатель способен выполнить множество вычислений, оставаясь при этом неизменным – примерно так же, как молекула катализатора (простейший создатель) может выполнить множество актов катализа, оставаясь при этом неизменной.