bannerbannerbanner
Основы теории искусственных нейронных сетей

Александр Аполлонович Кириченко
Основы теории искусственных нейронных сетей

Полная версия

© Александр Аполлонович Кириченко, 2020

ISBN 978-5-4498-2598-8

Создано в интеллектуальной издательской системе Ridero

История искусственных нейронных сетей

Искусственные нейронные сети – один из разделов науки Искусственный интеллект. К этой науке приковано пристальное внимание с 1980 года, когда Япония объявила о создании вычислительных систем 5 поколения. Предполагалось, что создаваемые вычислительные системы кроме обычных компьютеров будут содержать машины логического вывода (решатель, планировщик или логический блок), базу знаний, систему общения.

В основе всех существующих компьютеров с 1940-х гг. лежала архитектура с разделенным процессингом и памятью. Ее принципиальным ограничением являлась неспособность к самостоятельному ассоциированию и синтезу нового знания.

Сегодня на рынке представлены сотни нейральных симуляторов самого разного уровня исполнения и возможностей. В сети представлено множество их компаративных обзоров. Большинство из них поддерживает лишь ограниченное число возможных для построения стандартных архитектур классических нейросетей и методов при очень небольшом числе нейронов, которые можно включить в сеть.

В начале 2000 годов начался переход к новой архитектурной парадигме – ассоциативным искусственным когнитивным системам, способным к самообучению и синтезу нового знания путем ассоциативной рекомбинации полученной информации.

Под «искусственными когнитивными системами» понимаются технические системы, способные к

· познанию, распознаванию образов и самостоятельному усвоению новых знаний из различных источников,

· продолжительному обучению, пониманию контекстуального значения и субъективной оценке получаемой информации,

· синтезу нового знания,

· мышлению и поведению для успешного решения существующих проблем в условиях реального мира.

Основными зарубежными проектами создания подобных ИКС являются

· европейские проекты BBP/HBP,

· американская инициатива BRAIN,

· проект IBM DeepQA «Watson»,

· проект «Siri» корпорации Apple,

· проект нейросетевого искусственного интеллекта и использующих его роботов компании Google,

· японские проекты JST,

· канадский проект «Spaun» и др.

С 2012 года в России началось активное проведение ИТ-исследований в сфере разработки искусственных когнитивных систем, разработана Стратегическая программа создания Центра прорывных исследований в области информационных технологий «Искусственные когнитивные системы».

Повышение интереса к тематике искусственного интеллекта требует появления достаточного количества публикаций о структуре и возможностях нейросистем, о типах искусственных нейросетей и открываемых ими возможностях автоматизации мыслительных процессов. Для удовлетворения возникающих потребностей необходимы с одной стороны – новые информационные материалы, и с другой стороны – программные средства, которые позволяют без особых затрат проверить новую информацию на практике, создавать свои нейросетевые системы разных типов, модели нейросетевых устройств и даже узлов нейрокомпьютеров на своём ноутбуке. Необходимую информацию даёт эта книга, а доступные программные средства можно получить из Интернет [3]. Большинство примеров в книге выполнено на freeware пакете MemBrain.

Искусственные нейросети являются электронными моделями нейронной структуры мозга.

Продолжительный период эволюции придал мозгу человека много качеств, отсутствующих в современных компьютерах с архитектурой фон Неймана. К ним относятся:

· способность к обучению и обобщению

· ассоциативность и адаптивность

· толерантность к ошибкам

· параллельность работы

Множество проблем, не поддающиеся решению традиционными компьютерами, могут быть эффективно решены с помощью нейросетей.

Достижения в области нейрофизиологии дают начальное понимание механизма естественного мышления, в котором хранение информации происходит в виде сложных образов. Процессы хранения информации в виде образов, использования образов при решении поставленной проблемы определяют новую область в обработке данных, которая, не используя традиционного программирования, обеспечивает создание нейронных сетей и их обучение. В лексиконе разработчиков и пользователей нейросетей присутствуют слова, отличные от традиционной обработки данных, в частности, «вести себя», «реагировать», «самоорганизовывать», «обучать», «обобщать» и «забывать».

Изучение человеческого мозга началось очень давно.

В 1791 году итальянский врач, анатом и физиолог, один из основателей электрофизиологии Луиджи Гальвани (1737—1798) издал «Трактат об электрических силах при мышечном движении», основанный на его выводах о наличии в живых организмах гальванического электричества [1].

О Луиджи Гальвани известно:

Дата рождения‎: ‎9 сентября 1737

Дата смерти‎: ‎4 декабря 1798 (61 год)

Место рождения‎: ‎Италия, Болонья‎, Папская область

Место работы‎: ‎Болонский университет

В 1759 г. он окончил Болонский университет

В 1763 году синьор Гальвани становится профессором.

В 1791 г. – Гальвани заметил сокращение мышц препарированной лягушки при прикосновении нервных окончаний к металлическим стержням (медному и цинковому). С этим было связано начало активного изучения нервной системы живых организмов.

С появлением современной электроники начались попытки аппаратного моделирования нейрофизиологических процессов вплоть до самого сложного – мышления. Самым значительным событием стало появление электронных вычислительных машин.

Первым цифровым вычислительным устройством, а также первой электронной вычислительной машиной стал компьютер ABC (Atanasoff and Berry Computer) [2]. Задуманный в 1939 году, компьютер создавался в целях решения систем линейных уравнений. В 1942 году он был успешно собран и протестирован. Дальнейшая разработка была приостановлена из-за того, что Атанасов покинул Университет штата Айова, будучи призванным на военную службу в связи со вступлением США во Вторую мировую войну.

Для ABC были характерны использование электронных ламп, двоичной системы счисления, наличие триггерной памяти и набираемой на коммутационной доске компьютерной программы.

Работа Джона Винсента Атанасова и Клиффорда Берри над вычислительной машиной долгое время не была широко известна, пока в 1960-х годах она не всплыла в ходе конфликта по поводу того, кто являлся первым изобретателем электронного компьютера. Первоначально считалось, что первым компьютером являлся ENIAC, однако в 1973 году Федеральный районный суд США постановил отозвать патент ENIAC и заключил, что ABC является первым «компьютером», изобретателем которого являлся John Vincent Atanasoff, американский физик, математик и инженер-электрик болгарского происхождения:


В мае 1930 года Атанасов защитил докторскую диссертацию в Висконсинском университете в Мадисоне. Работал ассистент-профессором математики и физики в Государственном колледже штата Айова.

Что касается нейросетевых технологий, то в 1943 г. вышла статья нейрофизиолога Уоррена Маккалоха (Warren McCulloch) и математика Уолтера Питтса (Walter Pitts) про работу искусственных нейронов и представление модели нейронной сети на электрических схемах.

1949 г. – опубликована книга Дональда Хебба (Donald Hebb) «Организация поведения», где исследована проблематика настройки синаптических связей между нейронами.

1950-е гг. – появляются программные модели искусственных нейросетей. Первые работы были проведены Натаниелом Рочестером (Nathanial Rochester) из исследовательской лаборатории IBM.

В 1956 году на конференции в Дартмутском университете было принято решение об образовании нового научного направления – искусственный интеллект (ИИ). Английское название: artificial intelligence содержит слово intelligence, которое означает «умение рассуждать разумно».

Единого ответа на вопрос, чем занимается искусственный интеллект, не существует. Среди исследователей ИИ до сих пор не существует какой-либо доминирующей точки зрения на критерии интеллектуальности, систематизацию решаемых целей и задач, нет даже строгого определения науки «Искусственный Интеллект».

Наиболее горячие споры в философии искусственного интеллекта вызывает вопрос возможности мышления как творения человеческих рук. Вопрос «Может ли машина мыслить?», который подтолкнул исследователей к созданию науки о моделировании человеческого разума, был поставлен Аланом Тьюрингом в 1950 году.

Наиболее устоявшимся является мнение, что интеллект тесно связан с представлением и использованием знаний, машинным творчеством, и затрагивает такие направления, как инженерия знаний, представление знаний, роботы, искусственные нейронные сети, машинное обучение, глубокое обучение, нейронный процессор.

Направление инженерия знаний объединяет задачи получения знаний из простой информации, их систематизации и использования. Это направление исторически связано с созданием экспертных систем – программ, использующих специализированные базы знаний для получения достоверных заключений по какой-либо проблеме.

Производство знаний из данных – одна из базовых проблем интеллектуального анализа данных. Существуют различные подходы к решению этой проблемы, в том числе – на основе нейросетевой технологии, использующие процедуры вербализации нейронных сетей

К области машинного обучения относится большой класс задач на распознавание образов. Например, это распознавание символов, рукописного текста, речи, анализ текстов.

Нейронные сети используются для решения нечётких и сложных проблем, таких как распознавание или кластеризация объектов.

 

Природа человеческого творчества ещё менее изучена, чем природа интеллекта. Тем не менее, эта область существует, и здесь поставлены проблемы написания компьютером музыки, литературных произведений (часто – стихов или вариаций на темы сказок), художественное творчество. Создание реалистичных образов широко используется в кино и индустрии игр.

Отдельно выделяется изучение проблем технического творчества систем искусственного интеллекта. Теория решения изобретательских задач, предложенная в 1946 году российским изобретателем Г. С. Альтшуллером, положила начало таким исследованиям.

В процессе работы над искусственным интеллектом появились новые виды информации, алгоритмы работы с ними, новые методы получения и обработки данных. Информация может быть представлена в виде данных, знаний, правил и закономерностей, способов получения (добычи), способов хранения и использования. Обращено внимание на смысл, содержащийся в информации, на его поиск, хранение, получение, преобразование. Понимание смысла связано с выполнением умозаключений, с использованием интеллектуальных навыков, включающих в себя такие, как:

– сопоставление сложных объектов и оценку их сходства;

– выделение типового объекта из группы однородных;

– поиск типичных черт, существенных признаков;

– формирование описания типового объекта, выделение его отличительных черт;

– определение понятий (дефиниции);

– выявление причинно-следственных связей;

– интерпретация связей и свойств исследуемых объектов;

– генерация гипотез;

– выявление закономерностей;

– самообучение, адаптация;

– умение делать традуктивные, индуктивные, дедуктивные выводы;

– …

Среди важнейших классов задач, которые ставились перед ИИ с момента его зарождения как научного направления, следует выделить следующие трудно формализуемые задачи:

– доказательство теорем,

– управление роботами,

– распознавание изображений,

– машинный перевод,

– понимание текстов на естественном языке,

– программирование компьютерных игр,

– машинное творчество (синтез музыки, стихотворений, текстов, сказок).

По мере развития ИИ появились новые виды интеллектуальных изделий, в основном – это службы техподдержки различных компаний, экспертные системы по подбору товаров (подарков), по оказанию интеллектуальных услуг клиентам, автоматизированные онлайн-помощники, которые иногда реализованы как чат-боты на веб-страницах, в виде различных интеллектуальных изделий:

 
1. Интеллектуальных моделей, среди них:
·        Обучающих;
·        Самообучаемых;
·        Для естественноязыкового (ЕЯ) диалога;
·        Для распознавания образов, автоматической классификации;
·        Для оцифровки смысла;
·Для исследования психических процессов (таких, как ассоциативная память, мышление, …).
2. Эвристические программы
3. Экспертные системы
4. Системы символьных преобразований
5. Базы знаний
6. Машины логического вывода
7. Системы автоматического программирования
8. Рассуждающие системы
9. Нейронные программные системы
10. Семантические поисковые системы
11. Системы психологического тестирования
12. Системы речевого общения
 

И другие…

1958 г. – Джон фон Нейман (John fon Neumann) предложил имитацию простых функций нейронов с использованием вакуумных трубок.

1959 г. – Бернард Видров (Bernard Widrow) и Марсиан Хофф (Marcian Hoff) разработали нейросетевые модели ADALINE (ADAptive LINear Elements) и MADALINE (Множественные Адаптивные Линейные Элементы (Multiple ADAptive LINear Elements)).

Нейробиолог Френк Розенблатт (Frank Rosenblatt) начал работу над перцептроном. Однослойный перцептрон был построен аппаратно и считается классической нейросетью. Тогда перцептрон использовался для классификации входных сигналов в один из двух классов. К сожалению, однослойный перцептрон был ограниченым и подвергся критике в 1969 г., в книге Марвина Мински (Marvin Minsky) и Сеймура Пейперта (Seymour Papert) «Перцептроны».

После спада интереса к нейросетям, продолжавшегося все семидесятые годы, в 1982 г. – к возрождению интереса привело несколько событий. Джон Хопфилд (John Hopfield) представил статью в национальную Академию Наук США. Подход Хопфилда показал возможности моделирования нейронных сетей на принципе новой архитектуры.

В то же время в Киото (Япония) состоялась международная конференция по компьютерам пятого поколения, которые должны были быть построены на основе искусственного интеллекта. Американские периодические издания подняли эту историю, акцентируя, что США могут остаться позади, что привело к росту финансирования в области нейросетей.

С 1985 г. Американский Институт Физики начал ежегодные встречи – «Нейронные сети для вычислений».

1990 г. – Департамент программ инновационных исследований защиты малого бизнеса назвал 16 основных и 13 дополнительных тем, в которых возможно использование нейронных сетей.

Сегодня обсуждения нейронных сетей происходят везде. Перспектива их использования кажется довольно яркой в свете решения нетрадиционных проблем и является ключом к целой технологии. Исследования направлены на программные и аппаратные реализации нейросетей. Компании работают над созданием трех типов нейрочипов: цифровых, аналоговых и оптических, которые обещают появиться в близком будущем.

В XXI веке усилилось внимание к аналогии с мозгом. Точная работа мозга человека – все еще тайна. Тем не менее некоторые аспекты работы этого удивительного процессора известны. Базовым элементом мозга человека являются специфические клетки, известные как нейроны, способные думать и применять предыдущий опыт к каждому действию, что отличает их от остальных клеток тела.

Кора головного мозга человека является плоской, образованной из нейронов поверхностью, толщиной от 2 до 3 мм площадью около 2200 см2. Кора головного мозга содержит около 1011 нейронов. Каждый нейрон связан с 103 – 104 другими нейронами. В целом мозг человека имеет приблизительно от 1014 до 1015 взаимосвязей.

Сила человеческого ума зависит от числа базовых компонент, многообразия соединений между ними, а также от обучения.

Индивидуальный нейрон является сложным, имеет свои составляющие, подсистемы и механизмы управления и передает информацию через большое количество электрохимических связей. Насчитывают около сотни разных типов нейронов. Вместе нейроны и соединения между ними при работе формируют процесс, отличающийся от процесса вычислений традиционных компьютеров. Искусственные нейросети моделируют лишь главнейшие элементы сложного мозга.

В СССР до 1970-х годов все исследования ИИ велись в рамках кибернетики. По мнению Д. А. Поспелова, науки «информатика» и «кибернетика» были в это время смешаны по причине ряда академических споров. Только в конце 1970-х в СССР начинают говорить о научном направлении «искусственный интеллект» как разделе информатики. При этом родилась и сама информатика, подчинив себе прародительницу «кибернетику». В конце 1970-х создаётся толковый словарь по искусственному интеллекту, трёхтомный справочник по искусственному интеллекту и энциклопедический словарь по информатике, в котором разделы «Кибернетика» и «Искусственный интеллект» входят наряду с другими разделами в состав информатики. Термин «информатика» в 1980-е годы получает широкое распространение, а термин «кибернетика» постепенно исчезает из обращения, сохранившись лишь в названиях тех институтов, которые возникли в эпоху «кибернетического бума» конца 1950х – начала 1960х годов.

В России 30 мая 2019 г. на совещании по развитию цифровой экономики под председательством В. В. Путина было принято решение о подготовке национальной стратегии Российской Федерации по искусственному интеллекту. В её рамках готовится федеральная программа.

11 октября 2019 г. В. В. Путин своим указом утвердил национальную стратегию развития искусственного интеллекта в России до 2030 года.

Рейтинг@Mail.ru