bannerbannerbanner
Выносливость. Разум, тело и удивительно гибкие пределы человеческих возможностей

Алекс Хатчинсон
Выносливость. Разум, тело и удивительно гибкие пределы человеческих возможностей

Полная версия

В следующие десять лет я много раз пытался осуществить подобные прорывы, но результаты были явно неоднозначными. Знание (или вера), что все пределы у нас в голове, не делает их менее реальными во время соревнований. И это не значит, что можно просто принять решение изменить их. Если уж на то пошло, все эти годы моя голова, к моему разочарованию и смятению, удерживала меня так же часто, как и толкала вперед. Как сказал участник Олимпийских игр, бегун Ян Добсон, пытаясь понять собственные успехи и неудачи, «такие результаты должны иметь математическое объяснение, но его нет»[23]. Я тоже искал формулу, которая позволила бы мне раз и навсегда вычислить свои пределы. Если бы я знал, что бегу на предельной для своего организма скорости, то без сожаления ушел бы из спорта.

В двадцать восемь лет, после случившегося очень не вовремя стрессового перелома крестца за три месяца до отбора к Олимпийским играм 2004 года, я наконец решил двигаться дальше. Я вернулся в университет, получил диплом журналиста, а затем начал работать журналистом широкого профиля в газете в Оттаве. Но меня продолжали мучить все те же вопросы. Почему бег нельзя просчитать математически? Что не давало мне так долго уложиться в четыре минуты и что изменилось, когда я это сделал? Я ушел из газеты и как фрилансер начал писать о спорте на выносливость: не столько о том, кто выиграл и кто проиграл, сколько о том, почему. Я проштудировал научную литературу и обнаружил, что по этим вопросам активно ведутся весьма энергичные (а иногда и злобные) дебаты.

Большую часть XX века физиологи решали невероятную задачу, пытаясь понять механизм усталости. Они отрезали лягушкам задние лапы и заставляли мышцы сокращаться с помощью электричества, пока те не переставали дергаться, таскали громоздкое лабораторное оборудование в экспедиции на вершины Анд, доводили до изнеможения тысячи добровольцев на беговых дорожках и в тепловых камерах, заставляя их принимать всевозможные препараты. Сформировался механистический, почти математический взгляд на человеческие пределы: как автомобиль с кирпичом на педали газа, вы едете, пока не закончится бензин в баке или не закипит радиатор, а затем останавливаетесь.

Но это не полная картина. С появлением сложных методов измерения и возможности манипулирования мозгом исследователи наконец получили представление о том, что происходит с нейронами и синапсами, когда мы доведены до предела. Оказывается, независимо от стресса – жары или холода, голода или жажды, мышечной боли, возможно, от ядовитой молочной кислоты – во многих случаях важно то, как мозг интерпретирует сигналы бедствия. Вместе с новым пониманием роли мозга появляются невиданные, порой неоднозначные возможности. Компания Red Bull в своей штаб-квартире в Санта-Монике экспериментировала с транскраниальной стимуляцией постоянным током: в поисках пределов физических возможностей к мозгу профессиональных триатлетов и велосипедистов высокого уровня подключались электроды, через которые проводился электрический разряд. Финансируемые британскими военными компьютерные исследования тренировки мозга для повышения выносливости солдат привели к поразительным результатам. Даже воздействие на подсознание может увеличить или уменьшить выносливость: изображение улыбающегося лица, вспыхивающее на 16 миллисекунд, повышает производительность при езде на велосипеде на 12 % по сравнению с изображениями хмурого лица.

За прошедшие десять лет, посетив лаборатории в Европе, Южной Африке, Австралии и Северной Америке, я поговорил с сотнями ученых, тренеров и спортсменов, не менее моего увлеченных расшифровкой тайны выносливости. Я начал с идеи, что мозг играет более важную роль, чем принято считать. Это оказалось правдой, но все не так просто, как пишут в книгах по саморазвитию, где «все проблемы в голове». Напротив, мозг и организм сильно связаны, и, чтобы понять, что устанавливает наши пределы при любом определенном наборе обстоятельств, нужно рассматривать их вместе. Именно этим занимались ученые, о которых вы узнаете, прочтя эту книгу. Удивительные результаты их исследований наводят меня на мысль, что, когда дело доходит до расширения наших границ, это только начало.

Глава 2. Человек-машина

На пятьдесят шестой день напряженного лыжного путешествия[24] Генри Уорсли взглянул на цифровой дисплей GPS-навигатора и остановился. «Вот и все, – объявил он с горькой улыбкой, воткнув лыжную палку в снежный наст, – мы это сделали!» Дело шло к вечеру 9 января 2009 года. Ровно за сто лет до этого британский исследователь Эрнест Шеклтон установил британский флаг во имя короля Эдуарда VII на Антарктическом плато именно в этом месте: 88°23’ ю. ш., 162° в. д., всего в 180 км от Южного полюса. В 1909 году это была самая южная точка, покоренная человеком[25]. Уорсли, ветеран Особой воздушной службы Британии, известный своим резким характером и долго боготворивший Шеклтона, пустил «слезу облегчения и радости» под толстыми стеклами полярных очков в первый раз с тех пор, как ему исполнилось десять лет (позже он объяснил: «Плохое самочувствие сделало меня более чувствительным»). Тогда он и его спутники, Уил Гоу и Генри Адамс, развернули палатку и зажгли огонь под чайником. Температура воздуха была –35℃.

Шеклтон был разочарован тем, что дошел только до точки 88°23’ ю. ш. За шесть лет до этого в составе исследовательской экспедиции Роберта Фалькона Скотта он был одним из тех троих, кто установил рекорд, добравшись до самой южной точки – 82°17’. Однако Скотт объявил, что его физическая слабость не дает группе двигаться вперед, и с позором отправил Эрнеста домой[26]. Одержимый желанием доказать себе, что может превзойти наставника и дойти до полюса, Шеклтон вернулся в Антарктиду, возглавив экспедицию 1908–1909 годов. Однако она с самого начала стала тяжелым испытанием для всех четырех участников. К тому моменту, как четвертая и последняя маньчжурская пони Сокс исчезла в трещине ледника Бирдмора (через шесть недель после начала экспедиции), участники уже шли на сокращенном рационе, и вероятность достижения цели все снижалась. Но Шеклтон решил дойти как можно дальше. Он признал 9 января неизбежное. «Мы отстрелялись, – писал он в дневнике. – Наконец вернемся домой. О чем бы мы ни сожалели, мы сделали все возможное».

Столетие спустя Уорсли считал этот момент очень показательным и многое говорящим о Шеклтоне как о руководителе: «Решение повернуть назад[27], – утверждал он, – вероятно, одно из величайших решений, принятых за всю историю исследований». Уорсли был потомком шкипера корабля Шеклтона «Эндьюранс», Адамс – правнуком помощника Шеклтона в экспедиции 1909 года, а Гоу был женат на внучатой племяннице Шеклтона. Все трое решили почтить память предков и пройти маршрут длиной 1320 км без посторонней помощи. Затем они хотели сделать то, что их предкам не удалось: дойти последние 180 км до Южного полюса, откуда их должен был забрать и доставить на базу небольшой самолет Twin Otter. Шеклтону же пришлось развернуться и пройти все 1320 км до базового лагеря. Обратный путь, как и большинство маршрутов в великую эпоху исследований, превратился в отчаянную борьбу со смертью.

Каковы были пределы, с которыми столкнулся Шеклтон? Не только собачий холод. Участники экспедиции поднялись более чем на 3000 м над уровнем моря, и каждый ледяной вдох давал только две трети необходимого организму кислорода. Пони выбыли на раннем этапе пути, и участникам пришлось самим тащить сани, которые в начале пути весили около 230 кг, – постоянная серьезная нагрузка на мышцы. Они сжигали от 6000 до 10 000 калорий в день (так показывают исследования состояния современных полярных путешественников[28]), а питались половиной рациона. К концу своего безжалостного четырехмесячного путешествия они израсходовали около миллиона калорий, аналогично и в последующей экспедиции Скотта в 1911–1912 годах. Южноафриканский ученый Тим Ноукс утверждает, что эти две экспедиции были «величайшими человеческими достижениями с точки зрения длительной физической выносливости всех времен».

 

Шеклтон не был знаком со всеми этими факторами. Он, конечно, знал, что ему и его людям необходима пища, но остальная внутренняя работа человеческого организма для него оставалась тайной. Однако уже были сделаны первые шаги к ее раскрытию. За несколько месяцев до отплытия корабля Шеклтона «Нимрод» в Антарктиду с острова Уайт, в августе 1907 года, ученые из Кембриджского университета опубликовали отчет об исследованиях молочной кислоты[29], явного врага мышечной выносливости, так знакомого не одному поколению спортсменов. Взгляд на молочную кислоту кардинально изменился за прошедшее столетие (например, внутри организма на самом деле присутствует лактат[30] – отрицательно заряженный ион, а не молочная кислота), но эта статья ознаменовала начало новой эры исследований человеческой выносливости. Если понимать, как работает машина, можно вычислить ее конечные пределы.

Шведский химик XIX века Йёнс Якоб Берцелиус сейчас известен больше всего благодаря тому, что ввел современную систему обозначения химических элементов – H2O, CO2 и т. д. Однако он был первым, кто в 1807 году установил связь между мышечной усталостью и недавно открытым веществом, найденным в кислом молоке. Берцелиус заметил, что в мышцах загнанных на охоте оленей[31] высоко содержание этой молочной кислоты, и количество ее зависело от того, насколько сильно загнано животное перед гибелью. Справедливости ради стоит отметить: только сто лет спустя[32] химики узнали о том, что такое «кислоты». Сейчас нам известно, что лактат из мышц и крови, оказавшись вне организма, сразу вступает во взаимодействие с ионами водорода и образует молочную кислоту. Именно ее уровень измеряли Берцелиус и его последователи, и они считали, что молочная кислота, а не лактат важна при изучении причин усталости. В оставшейся части книги (кроме тех случаев, когда будем освещать историю проблемы) мы будем говорить о лактате.

Что означало наличие молочной кислоты в мышцах оленей, было непонятно, особенно если учесть, насколько мало тогда знали о работе мышц. Сам Берцелиус придерживался теории «виталистической (жизненной) силы»[33], которая, по мнению ученых, приводит в действие живые организмы и существует вне сферы обычной химии. Но витализм постепенно вытеснялся «механистической теорией», согласно которой человеческое тело скорее машина (хотя и очень сложная), которая подчиняется тем же основным законам, что и маятники или паровые двигатели. Серия до смешного примитивных экспериментов, проведенных в XIX веке, постепенно подсказывала, что же приводит в действие эту машину. Например, в 1865 году немецкие ученые во время восхождения на Фолхорн – вершину в Бернских Альпах высотой 2400 м – собрали свою мочу[34], а затем измерили содержание азота в ней. Исследователи пришли к выводу, что один только белок не может обеспечить всю энергию, необходимую для длительной физической нагрузки. По мере накопления таких открытий укреплялось некогда еретическое представление о том, что человеческие пределы – простой вопрос химии и математики.

Сейчас спортсмены проверяют уровень лактата во время тренировок с помощью экспресс-теста, делая небольшой укол (а некоторые компании и вовсе утверждают, что могут измерять лактат в режиме реального времени[35] с помощью пластыря, анализирующего состав пота). Но у первых исследователей даже простое определение наличия молочной кислоты вызывало серьезные затруднения. Берцелиус в 1808 году в книге «Лекции по химии животных» (Fӧrelӓsningar i Djurkemien) на шести страницах изложил свой рецепт: измельчить свежее мясо, протереть его через плотный полотняный мешок, приготовить из этого жидкость, испарить и подвергнуть ее различным химическим реакциям и получить осадок с растворенными свинцом и спиртами. В результате у исследователя остается «густой коричневый сироп, а в конечном счете – глазурь со всеми свойствами молочной кислоты».

Неудивительно, что дальнейшие попытки следовать такой процедуре вызвали путаницу и неоднозначность результатов, которые привели всех в замешательство. Так было и в 1907 году, когда кембриджские физиологи Фредерик Хопкинс и Уолтер Флетчер занялись этой проблемой. «К сожалению, известно, – писали они во введении к статье, – что… едва ли существует важный факт, касающийся образования молочной кислоты в мышцах, который был бы выдвинут одним наблюдателем, но не опровергнут другим». Хопкинс был очень придирчивым экспериментатором и впоследствии прославился как один из первооткрывателей витаминов, за что получил Нобелевскую премию. Флетчер – опытный бегун: в 1900-х он, будучи студентом, одним из первых преодолел трехсотдвадцатиметровый круг[36] во дворе кембриджского Тринити-колледжа, пока старинные часы на здании били двенадцать. Этот факт известен благодаря фильму «Огненные колесницы» (говорят, что Флетчер срезал углы).

Хопкинс и Флетчер погружали исследуемые мышцы в холодный спирт сразу после эксперимента. Это было серьезным достижением: так они добивались сохранения более-менее постоянного уровня молочной кислоты на последующих стадиях, среди которых по-прежнему было измельчение мышцы пестиком в ступке, а затем измерение ее кислотности. При помощи нового точного метода ученые исследовали мышечную усталость, экспериментируя на лягушачьих лапках, подвешенных длинными рядами по десять-пятнадцать пар и соединенных цинковыми крючками. Воздействуя электрическим током на одном конце ряда, они заставляли сокращаться все лапки одновременно. После двух часов периодических сокращений мышцы полностью истощались и были не способны даже слегка дергаться.

Результаты оказались очевидными: истощенные мышцы содержали втрое больше молочной кислоты, чем отдохнувшие, подтверждая подозрение Берцелиуса: это побочный продукт усталости, а возможно, и ее причина. Обнаружился еще один интересный момент: количество молочной кислоты уменьшалось, когда усталые лягушачьи мышцы запасались кислородом, но увеличивалось, когда кислорода не хватало. Наконец-то проявилась вполне современная картина того, что происходит при утомлении мышц, и с этого момента ученые стали быстро двигаться вперед.

Через год важность участия кислорода[37] подтвердил физиолог из Медицинского колледжа больницы Лондона[38] Леонард Хилл, опубликовав статью в British Medical Journal. Он давал чистый кислород бегунам, пловцам, рабочим и лошадям и получил потрясающие результаты. Марафонец пробежал пробную дистанцию 1,2 км, улучшив время на 38 секунд. Лошадь, впряженная в трамвайный вагон[39], смогла взобраться на крутой холм за две минуты и восемь секунд, а не за обычные три с половиной, и не так тяжело дышала наверху.

 

Один из коллег Хилла даже сопровождал пловца на длинные дистанции Джабиза Вольфе, когда тот пытался стать вторым человеком, пересекшим Ла-Манш. После более тринадцати часов плавания Вольфе был уже готов сдаться, но вдохнул кислород через длинную резиновую трубку, и у него открылось второе дыхание. «Снова пришлось подналечь на весла, чтобы не отставать от спортсмена, – отметил Хилл, – а до этого они то и дело дрейфовали и двигались вместе с приливом». Вольфе, хотя он и был с ног до головы обработан виски и скипидаром и натерт оливковым маслом, пришлось вытащить из воды за какие-то несчастные 400 м от французского берега из-за холода. Он пытался пересечь Ла-Манш двадцать два раза[40], но безуспешно.

По мере того как человек раскрывал тайны сокращения мышц, вырисовывался очевидный вопрос: каковы пределы этих сокращений? Мыслители XIX века обсуждали идею, что «закон природы» определяет максимальный потенциал физических возможностей каждого человека. «У каждого живого существа от рождения есть предел роста и развития во всех направлениях[41], за границы которого оно не может выйти, несмотря ни на какие усилия, – утверждал шотландский врач Томас Клустон в 1883 году. – Рука кузнеца не способна вырасти дальше определенного предела. Игрок в крикет не может увеличивать скорость игры бесконечно, переходя неизбежные пределы». Но что это за пределы? Кембриджский протеже Флетчера, Арчибальд Вивиан Хилл (он ненавидел свое имя[42] и именовал себя как «А. В.») в 1920-х впервые провел достоверные измерения максимальной выносливости.

Может показаться очевидным, что лучший тест на максимальную выносливость – соревнование. Однако результат в соревнованиях зависит от очень многих переменных факторов, например темпа. Возможно, вы обладаете величайшей выносливостью в мире, но, если вы неисправимый оптимист и не можете не сорваться с места в карьер (или трус, который всегда бежит трусцой), время, за которое вы завершите дистанцию, никогда не будет точно отражать то, на что вы физически способны.

Можно частично исключить эту вариативность, если использовать функциональный тест на время до истощения: сколько вы сможете бежать на дорожке с определенной скоростью? Как долго будете поддерживать определенную выходную мощность на велотренажере? По сути, именно так сейчас проводятся исследования выносливости. Но у этого подхода есть недостатки. Главное – все зависит от того, насколько вы мотивированы, чтобы заставить себя работать на пределе возможностей. Кроме того, важно, как вы спали предыдущей ночью, что ели перед тестированием, насколько удобная у вас обувь, а также ряд других отвлекающих факторов и стимулов. Так что это – проверка вашей работоспособности в конкретный день, а не предельной работоспособности в принципе.

В 1923 году Хилл[43] и его коллега Хартли Лаптон, трудившиеся на тот момент в Манчестерском университете, опубликовали первую серию работ, посвященных исследованию того, что они первоначально назвали «максимальным вдыханием кислорода» – количества кислорода, которое теперь более известно под научным сокращением VO2max. (Современные ученые называют это максимальным потреблением кислорода (МПК), поскольку это количество кислорода, которое на самом деле используют ваши мышцы, а не то, которое вы вдыхаете.) За год до этого Хилл вместе с другим ученым, Отто Мейергофом, уже получил Нобелевскую премию за исследования физиологии мышц, включающие точные измерения количества тепла, производимого при их сокращении[44]. Как и многие физиологи, с которыми мы познакомимся в следующих главах, он был заядлым бегуном. Что касается экспериментов по использованию кислорода, то Хилл сам для себя стал лучшим испытуемым, изложив в докладе 1923 года, что в свои тридцать пять он «прошел хорошую общую подготовку благодаря ежедневной медленной пробежке около 1,5 км перед завтраком». Кроме того, он с удовольствием участвовал в соревнованиях по легкой атлетике и в кроссах по пересеченной местности: «По правде говоря, вполне возможно, что именно мои трудности и неудачи в легкой атлетике[45], а также забитые мышцы и усталость, которые иногда случались, заставили меня задаться многочисленными вопросами, на которые я попытался ответить здесь».

Эксперименты, которые ставили на себе Хилл с коллегами, включали пробежки в саду у Хилла по маленькому кругу восьмидесятиметровой травяной дорожки (для сравнения, длина стандартной беговой дорожки составляет 400 м). Для измерения объема потребляемого кислорода на спине бегуна закрепляли мешок с воздухом, подсоединенный к дыхательному аппарату. Чем быстрее двигался исследователь, тем больше он потреблял кислорода, но только вплоть до какого-то момента. В конце концов ученые пришли к выводу, что потребление кислорода «достигает максимального значения[46], после которого никакими усилиями нельзя его увеличить». Важно отметить, что они по-прежнему могут увеличивать скорость бега, однако при этом не будет увеличиваться потребление кислорода. Это плато и есть ваш VO2max (МПК) – чистая и объективная мера выносливости, которая теоретически не зависит от мотивации, погоды, фазы луны или других условий. Хилл предположил, что VO2max отражает максимальные возможности сердца и кровеносной системы. Это измеримая константа, которая, как может показаться, демонстрирует «объем двигателя», данный спортсмену изначально.

Благодаря такому шагу вперед у Хилла появилась возможность рассчитать теоретический максимальный результат любого бегуна на любой дистанции. На низких скоростях усилие в основном аэробное (задействующее кислород), поскольку кислород необходим для того, чтобы эффективно преобразовать энергию, полученную из пищи, в форму, которую могут использовать мышцы. Показатель VO2max отражает аэробные возможности. На более высоких скоростях ногам нужна энергия на уровне, которого нельзя достичь на основе аэробных процессов, поэтому надо использовать быстро сгораемые анаэробные (без кислорода) источники энергии. Проблема, как показали Хопкинс и Флетчер в 1907 году, в том, что мышцы, сокращающиеся без кислорода, вырабатывают молочную кислоту. Их способность переносить высокий уровень этого вещества – то, что мы сейчас назвали бы анаэробной способностью, – по мнению Хилла, другой ключевой фактор выносливости, особенно при нагрузках, длящихся менее десяти минут.

По словам Хилла, в свои двадцать с небольшим он пробежал четверть мили (402,3 м) за 53 секунды, полмили (804,7 м) за 2 минуты и 3 секунды, 1 милю за 4:45 и 2 мили (3218,7 м) за 10:30. Его лучшие результаты были весьма достойными для того времени, хотя, как скромно подчеркнул ученый, не «первоклассные» (или, скорее, в соответствии с научной практикой того времени, эти подвиги приписывались анонимному субъекту, известному как «Х.», который оказался того же возраста, что и Хилл, и бежал с такой же скоростью). Исчерпывающий тест в саду показал, что VO2max ученого составлял 4 л кислорода в минуту, а его толерантность к уровню молочной кислоты позволила ему накопить дополнительный[47] «кислородный долг» около 10 л. Используя эти цифры наряду с измерениями эффективности бега, Хилл построил график, который удивительно точно предсказывал его лучшие результаты на разных дистанциях.

Хилл радостно поделился своими результатами. «Наш организм – машина, и затраты энергии можно очень точно измерить», – заявил он в 1926 году в журнале Scientific American в статье под заголовком «Научный подход к легкой атлетике» (The Scientific Study of Athletics). Он опубликовал анализ мировых рекордов[48] в беге, плавании, велосипедном спорте, гребле и конькобежном спорте на дистанциях от 100 ярдов (91,4 м) до 100 миль (160,93 км). Если говорить о самых коротких спринтерских дистанциях, форма кривой мировых рекордов была, по-видимому, обусловлена «вязкостью мышц», которую Хилл изучал во время учебы в Корнеллском университете. Он оборачивал металлическую ленту, изготовленную из тупого намагниченного полотна пилы, вокруг груди спринтера, и тот пробегал мимо ряда катушек электромагнитов – чуть ли не первой работающей системы автоматического хронометража. На более длинных дистанциях молочная кислота, а затем VO2max изменили направление кривой мировых рекордов, как и было предсказано.

Но для самых длинных дистанций тайна по-прежнему не была раскрыта. По расчетам Хилла, если скорость будет достаточно низкой, сердце и легкие смогут доставлять необходимое количество кислорода к мышцам, чтобы поддерживать кислородный обмен, или аэробную нагрузку. Иными словами, существует темп, который можно поддерживать почти бесконечно. Однако данные показали устойчивое снижение: рекорд в беге на 100 миль был поставлен на куда более низкой скорости, чем рекорд на 50 миль, который, в свою очередь, был меньше, чем рекорд в беге на 25 миль. Хилл признал: «Чтобы объяснить дальнейший спад на графике, недостаточно рассматривать только потребление кислорода и кислородный долг». Он нарисовал карандашом пунктирную почти горизонтальную линию, показывающую, где, по его мнению, должны располагаться рекорды на сверхдлинные дистанции, и пришел к выводу, что они ниже прежде всего потому, что «величайшие спортсмены ограничивались дистанциями не более 10 миль».

К тому моменту, когда в 2009 году Генри Уорсли и его спутники наконец достигли Южного полюса, они прошли на лыжах 1480 км, таща за собой сани, весившие на старте 136 кг. В начале последней недели Уорсли знал, что права на ошибку почти не осталось. В свои сорок восемь он был на десять лет старше Адамса и Гоу, и к концу каждого дня лыжного путешествия изо всех сил старался не отставать от спутников. В первый день нового года, когда оставалось пройти еще 200 км, он отклонил предложение Адамса переложить часть груза в его сани. Он закопал в снег свой запасной паек – осознанный риск в обмен на экономию 8 кг. «Вскоре я с тревогой обнаружил, что каждый час для меня стал настоящей борьбой, и начал осознавать, что слабею», – вспоминал он. Уорсли стал отставать и теперь приходил в лагерь на 10–15 минут позже остальных.

Накануне последнего рывка к полюсу Уорсли, прежде чем закутаться в спальник, вышел один из палатки прогуляться, как делал каждый вечер на протяжении всего путешествия. Он проводил это время в тишине, размышляя о зубчатых ледниках, пройденных в этот день, и горах вдалеке, которые предстояло перейти. Иногда окружающий пейзаж представлял собой «бесконечное пространство небытия». В последнюю ночь он наблюдал в полярных сумерках удивительное зрелище: вокруг солнца, по форме напоминающего бриллиант, светился раскаленный добела круг, а с обеих сторон виднелись так называемые ложные солнца[49]. Такой эффект получался при преломлении солнечных лучей в дымке из призмообразных кристалликов льда. За все время путешествия это было первое четкое появление ложных солнц. Конечно, сказал себе Уорсли, это предзнаменование – знак Антарктики, что она наконец-то ослабила свою хватку.

Следующий день плавно перевел путешественников от торжественного к обыденному: неторопливая восьмикилометровая кода эпического путешествия, после чего они оказались в теплых объятиях станции «Амундсен – Скотт» на Южном полюсе. Наконец-то они сделали это, и Уорсли переполняло чувство облегчения и удовлетворения. Однако Антарктика с ним еще не рассчиталась. Уорсли тридцать лет отслужил в британской армии, воевал в числе прочего на Балканах и в Афганистане в составе элитной Специальной авиационной службы (САС), такой же, как американские «Морские котики» (Силы специальных операций ВМС) или отряд «Дельта». Он гонял на «Харлее», обучал шитью заключенных[50], а в Боснии толпа чуть не закидала его камнями. Когда Уорсли очень сильно увлекся идеей полярного путешествия, то оно потребовало от него выложиться на все сто и тем самым открыло глаза на то, на что же он действительно способен. Бросив вызов собственной выносливости, Уорсли наконец нашел достойного противника, но при этом попался на крючок.

Через три года, в конце 2011 года, Уорсли вернулся в Антарктику, чтобы сто лет спустя реконструировать гонку Роберта Фалькона Скотта и Руаля Амундсена к Южному полюсу. Команда Амундсена двигалась на лыжах по восточному маршруту, 52 собаки (часть из которых потом стала пищей) тащили нарты; полюса достигли 14 декабря 1911 года. Команда Скотта, с трудом преодолевая проложенный Шеклтоном более длинный маршрут, с неисправными механическими санями и маньчжурскими лошадьми, которые едва справлялись со льдом и холодом, пришла на полюс 34 дня спустя. На финише их ждала палатка Амундсена и вежливая записка («Поскольку вы, вероятно, первый, кто пришел в этот район после нас[51], я прошу вас любезно переслать это письмо королю Хокону VII. Не стесняйтесь, пользуйтесь всем, что найдете в палатке. С наилучшими пожеланиями, желаю вам благополучного возвращения…»). Обратный путь Амундсена прошел без происшествий, а вот мучительные испытания Скотта показали, что было поставлено на карту. Сочетание плохой погоды, невезения и дрянного снаряжения вкупе с неудачным «научным»[52] расчетом потребностей в калориях ослабили партию Скотта, и у британцев не было сил на возвращение. Не в силах преодолеть последние 17 км до оставленного продовольственного склада, голодные и обмороженные, они пролежали в палатке десять дней пурги и в итоге погибли.

Столетие спустя Уорсли повел группу из шести военнослужащих по маршруту Амундсена, став первым человеком, прошедшим оба классических маршрута к полюсу. Но это было еще не все. В 2015 году он вернулся, чтобы реконструировать еще одно событие столетней давности: на этот раз Имперскую трансантарктическую экспедицию – самое знаменитое (и жестокое) путешествие Шеклтона. В 1909 году благоразумное решение Шеклтона повернуть назад, не доходя до полюса, несомненно, спасло его и его команду, но они побывали на волоске от смерти. Кораблю было приказано ждать их до 1 марта, и поздно вечером 28 февраля Шеклтон с товарищем добрались до ближайшей к судну точки и подожгли деревянную метеостанцию, чтобы привлечь внимание команды и подать сигнал бедствия. В последующие годы после этого происшествия, а также после того, как Амундсен заявил о своих правах первопроходца на Южный полюс в 1911 году, Шеклтон сначала решил вообще не возвращаться на Южный континент. Но, как и Уорсли, он не смог оставаться в стороне.

Новый план Шеклтона состоял в том, чтобы первым пересечь Антарктический континент, от моря Уэдделла со стороны Южной Америки до моря Росса со стороны Новой Зеландии. На пути к началу маршрута корабль «Эндьюранс» оказался затертым во льдах моря Уэдделла, что вынудило Шеклтона и его команду провести зиму 1915 года на замерзших просторах. В конце концов корабль был раздавлен из-за движения льда, и люди отправились в легендарную одиссею, кульминацией которой стал переход длиной 1300 км через одно из самых бурных морей на земле в открытой спасательной шлюпке! Они добрались до крошечной китобойной базы на скалистом острове Южная Джорджия, откуда и вызвали спасателей. Мореплавателя, стоящего за этим удивительным подвигом, звали Фрэнк Уорсли, он был предком Генри Уорсли и вдохновителем его одержимости. Первоначальная экспедиция не достигла ни одной из своих целей, при этом трехлетняя сага в итоге стала одной из самых захватывающих историй о выносливости великой эпохи исследований. Покоритель Эвереста Эдмунд Хиллари назвал ее «величайшей историей выживания всех времен». Шеклтон снова заслужил похвалу за то, что благополучно вернул своих людей домой. (Три человека погибли в той группе, которая создавала продовольственные склады на предполагаемом маршруте возвращения Шеклтона с полюса.)

И снова Уорсли решил завершить незаконченное дело своего героя. Но на этот раз все было иначе. В предыдущих полярных походах он оба раза летел домой с Южного полюса – маршрут был вдвое короче того, что он наметил теперь. Чтобы завершить путь, нужно было не просто пройти большее расстояние с большим грузом, а решить сложную задачу – определить тонкую грань между упорством и безрассудством. В 1909 году Шеклтон повернул назад не потому, что не мог достичь полюса, а потому, что понял, что команда не сможет вернуться. В 1912 году Скотт пошел дальше и заплатил за это самую высокую цену. А Уорсли решил преодолеть 1770 км, пересечь континент в одиночку, без поддержки, без машин, таща за собой все свое снаряжение. Он стартовал на лыжах[53] 13 ноября с южной оконечности острова Беркнер, в 160 км от побережья Антарктики, волоча стопятидесятикилограммовые сани через замерзшее море.

23Heald M. It Should Be Mathematical // Propeller, Summer 2012.
24Подробности экспедиции Уорсли 2009 года и Шеклтона 1909 года взяты из книги «По следам Шеклтона» (In Shackleton’s Footsteps), написанной Уорсли в 2011 году; других источников на данный момент нет.
25Часто пишут не «180 км» (112 миль), а «156 км» (97 миль), потому что Шеклтон (как и Уорсли) указывали расстояния в морских милях, которые на 15 % длиннее привычных сухопутных. Все расстояния в этой книге приводятся в километрах и сухопутных милях, если не указано иначе.
26Есть версия, что Шеклтон сам быстро отправился домой (фактически сбежал), чтобы организовать свою экспедицию раньше следующей экспедиции Скотта. Прим. перев.
  Из архива интервью BBC Newsnight от 26 января 2016 года: http://youtube.com/watch?v=O3SMkxA08T8.
28Noakes T. The Limits of Endurance Exercise // Basic Research in Cardiology. 2006. Vol. 101. P. 408–417. См. также Noakes in Hypoxia and the Circulation / Ed. R. C. Roach et al. New York: Springer, 2007.
29Fletcher W. M., Hopkins F. G. Lactic Acid in Amphibian Muscle // Journal of Physiology. 1907. Vol. 35. № 4.
30Gladden L. B. Lactate Metabolism: A New Paradigm for the Third Millennium // Journal of Physiology. 2004. Vol. 558. № 1.
31Эту историю приводят во многих современных учебниках (например, The History of Exercise Physiology, ed. Charles M. Tipton, 2014), однако ее появление сложно отследить. Берцелиус впервые опубликовал свои исследования молочной кислоты, извлеченной из мышц убитых животных, в 1808 году (в книге на шведском Fӧrelӓsningar i Djurkemien, с. 176), но многие химики не поверили ему. Когда немецкий химик Юстус фон Либих попытался приписать себе заслугу этого открытия в 1846 году, Берцелиус написал возмущенный ответ, указав 1807-й как год наблюдения (Jahresbericht über die Fortschritte der Chemie und Mineralogie, 1848, с. 586). Но сам Берцелиус никогда не публиковал утверждения о том, что количество молочной кислоты зависело от тяжести физической нагрузки перед смертью. Наблюдение, приписываемое Берцелиусу, впервые появляется в учебнике 1842 года Lehrbuch der physiologischen Chemie (Carl Lehmann) на с. 285. В 1859 году физиолог Эмиль Дюбуа-Реймон написал Леману письмо с просьбой найти источник утверждения. Леман ответил, что получил личное письмо от Берцелиуса, где тот рассказывал, что в мышцах загнанных животных больше молочной кислоты, чем в мышцах в обычном состоянии, при этом животные, чьи ноги были обездвижены в районе малой берцовой кости перед гибелью, содержат еще меньше молочной кислоты (описано в Journal für praktische Chemie, 1859, с. 240; перепечатано в книге 1877 года Gesammelte Abhandlungen zur allgemeinen Muskel- und Nervenphysik со сноской на переписку на с. 32).
32Часто цитируемый эталон – определение Сванте Аррениуса, приведенное в продолжении работы, которая принесла ему Нобелевскую премию по химии 1903 года.
33Взгляды Берцелиуса на витализм были неоднозначными и со временем менялись, как сказано в статье Jørgensen B. S. More on Berzelius and the Vital Force // Journal of Chemical Education. 1965. Vol. 42. № 7.
34Needham D. Machina Carnis. Cambridge: Cambridge University Press, 1972.
35Geddes L. Wearable Sweat Sensor Paves Way for Real-Time Analysis of Body Chemistry // Nature. January 27, 2016. Пока неясно, однако, насколько уровень лактата в поте соотносится с тем, что происходит в кровотоке и мышцах.
36Thorne C. Trinity Great Court Run: The Facts // Track Stats. 1989. Vol. 27. № 3. Существуют разные философские подходы к тому, как «правильно» бежать по стадиону, поэтому то, что Флетчер срезал углы, не должно влиять на ваше отношение к нему.
37Hill L. Oxygen And Muscular Exercise as a Form of Treatment // British Medical Journal. 1908. Vol. 2. № 2492.
38Больница Лондона (The London Hospital), в настоящее время Королевская больница Лондона, – крупное многопрофильное медицинское учреждение, также играющее роль в подготовке медиков и научно-исследовательской деятельности. Прим. науч. ред.
39Речь о трамваях на конной тяге, или конках, распространенных в конце XIX века. Прим. перев.
40Jabez Wolffe Dead: English Swimmer, 66 // New York Times, October 23, 1943.
41Clouson T. S. Female Education from a Medical Point of View // Popular Science Monthly, December 1883, p. 215. Цитируется Джоном Хоберманом в статье Athletic Enhancement, Human Nature, and Ethics (New York: Springer, 2013), с. 263.
42Van der Kloot W. Mirrors and Smoke: A. V. Hill, His Brigands, and the Science of Anti-Aircraft Gunnery in World War I // Notes & Records of the Royal Society. 2011. № 65. P. 393–410.
43Hill A. V., Lupton H. Muscular Exercise, Lactic Acid, and the Supply and Utilization of Oxygen // Quarterly Journal of Medicine. 1923. Vol. 16. № 62. Подробности, приведенные в следующих абзацах, также взяты из его статьи, если не указан другой источник.
44Hill A. V. Muscular Activity. Baltimore: Williams & Wilkins, 1925.
45В журнале 1923 года Хилл описывает эксперименты, которые он проводил на «травяной дорожке длиной по окружности 84,5 м». Хью Лонг, его соавтор и участник экспериментов Хилла во время работы в Манчестерском университете, вспоминает, как «бегал вверх и вниз по ступенькам или по кругу в саду у профессора, когда тот брал из руки анализ крови»; цитата из статьи: Archibald Vivian Hill. 26 September 1886 – 3 June 1977 // Biographical Memoirs of Fellows of the Royal Society. 1978. Vol. 24. P. 71–149.
46Hill, Muscular Activity, p. 98.
47Скорость потребления кислорода отстает от энергетических потребностей мышц, поэтому вначале они покрываются из других источников. В начальной фазе мышечной работы в мышцах формируется кислородный дефицит. После окончания работы этот дефицит должен быть покрыт за счет дополнительного потребления кислорода, которое называется «кислородный долг». Прим. науч. ред.
48Hill A. V. The Physiological Basis of Athletic Records // Nature. 1925. October 10. О том, что Хилл писал по поводу вязкости мышц, см. Muscular Movement in Man (New York: McGraw-Hill, 1927). Подробнее о системе тайминга с помощью полотна пилы можно прочесть в статье Хилла Are Athletes Machines? // Scientific American, August 1927.
49Эффект называется «гало». Точнее – паргелий, один из видов гало. Прим. перев.
50Hatfield S. This Is the Side of Antarctic Explorer Henry Worsley That the Media Shies Away From // Independent. 2016. January 31.
51Evans E. South with Scott. London: Collins, 1921.
52Halsey L., Stroud M. Could Scott Have Survived with Today’s Physiological Knowledge? // Current Biology. 2011. Vol. 21. № 12.
  Подробности одиночного путешествия Генри Уорсли по стопам Шеклтона взяты из ежедневного аудиодневника, который он публиковал здесь: http://soundcloud.com/shackleton (удалены файлы за последние 5 дней). Другие сведения о его путешествии можно посмотреть на сайте http://shackletonsolo.org.
1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21 
Рейтинг@Mail.ru