bannerbannerbanner
Метрология, стандартизация и сертификация

А. С. Якорева
Метрология, стандартизация и сертификация

Полная версия

1. Предмет и задачи метрологии

Под метрологией подразумевается наука об измерениях, о существующих средствах и методах, помогающих соблюсти принцип их единства, а также о способах достижения требуемой точности.

Происхождение самого термина «метрология» возводят к двум греческим словам: metron, что переводится как «мера», и logos – «учение». Бурное развитие метрологии пришлось на конец ХХ в. Оно неразрывно связано с развитием новых технологий. До этого метрология была лишь описательным научным предметом. Таким образом, можно сказать, что метрология изучает:

1) методы и средства для учета продукции по следующим показателям: длине, массе, объему, расходу и мощности;

2) измерения физических величин и технических параметров, а также свойств и состава веществ;

3) измерения для контроля и регулирования технологических процессов.

Выделяют несколько основных направлений метрологии:

1) общая теория измерений;

2) системы единиц физических величин;

3) методы и средства измерений;

4) методы определения точности измерений;

5) основы обеспечения единства измерений, а также основы единообразия средств измерения;

6) эталоны и образцовые средства измерений;

7) методы передачи размеров единиц от образцов средств измерения и от эталонов рабочим средствам измерения.

Следует различать также объекты метрологии: 1) единицы измерения величин;

2) средства измерений;

3) методики, используемые для выполнения измерений и т. д.

Метрология включает в себя: во-первых, общие правила, нормы и требования, во-вторых, вопросы, нуждающиеся в государственном регламентировании и контроле. И здесь речь идет о:

1) физических величинах, их единицах, а также об их измерениях;

2) принципах и методах измерений и о средствах измерительной техники;

3) погрешностях средств измерений, методах и средствах обработки результатов измерений с целью исключения погрешностей;

4) обеспечении единства измерений, эталонах, образцах;

5) государственной метрологической службе;

6) методике поверочных схем;

7) рабочих средствах измерений.

В связи с этим задачами метрологии становятся: усовершенствование эталонов, разработка новых методов точных измерений, обеспечение единства и необходимой точности измерений.

2 Классификация измерений

Классификация средств измерений может проводиться по следующим критериям.

1. По характеристике точности измерения делятся на равноточные и неравноточные.

Равноточными измерениями физической величины называется ряд измерений некоторой величины, сделанных при помощи средств измерений (СИ), обладающих одинаковой точностью, в идентичных исходных условиях.

Неравноточными измерениями физической величины называется ряд измерений некоторой величины, сделанных при помощи средств измерения, обладающих разной точностью, и (или) в различных исходных условиях.

2. По количеству измерений измерения делятся на однократные и многократные.

3. По типу изменения величины измерения делятся на статические и динамические.

Статические измерения – это измерения постоянной, неизменной физической величины.

Динамические измерения – это измерения изменяющейся, непостоянной физической величины.

4. По предназначению измерения делятся на технические и метрологические.

Технические измерения – это измерения, выполняемые техническими средствами измерений.

Метрологические измерения – это измерения, выполняемые с использованием эталонов.

5. По способу представления результата измерения делятся на абсолютные и относительные.

Абсолютные измерения – это измерения, которые выполняются посредством прямого, непосредственного измерения основной величины и (или) применения физической константы. Относительные измерения – это измерения, при которых вычисляется отношение однородных величин, причем числитель является сравниваемой величиной, а знаменатель – базой сравнения (единицей).

6. По методам получения результатов измерения делятся на прямые, косвенные, совокупные и совместные.

Прямые измерения – это измерения, выполняемые при помощи мер, т. е. измеряемая величина сопоставляется непосредственно с ее мерой. Примером прямых измерений является измерение величины угла (мера – транспортир).

Косвенные измерения – это измерения, при которых значение измеряемой величины вычисляется при помощи значений, полученных посредством прямых измерений.

Совокупные измерения – это измерения, результатом которых является решение некоторой системы уравнений. Совместные измерения – это измерения, в ходе которых измеряется минимум две неоднородные физические величины с целью установления существующей между ними зависимости.

3. Основные характеристики измерений

Выделяют следующие основные характеристики измерений:

1) метод, которым проводятся измерения;

2) принцип измерений;

3) погрешность измерений;

4) точность измерений;

5) правильность измерений;

6) достоверность измерений.

Метод измерений – это способ или комплекс способов, посредством которых производится измерение данной величины, т. е. сравнение измеряемой величины с ее мерой согласно принятому принципу измерения.

Существует несколько критериев классификации методов измерений.

1. По способам получения искомого значения измеряемой величины выделяют:

1) прямой метод (осуществляется при помощи прямых, непосредственных измерений);

2) косвенный метод.

2. По приемам измерения выделяют:

1) контактный метод измерения;

2) бесконтактный метод измерения.

Контактный метод измерения основан на непосредственном контакте какой-либо части измерительного прибора с измеряемым объектом.

При бесконтактном методе измерения измерительный прибор не контактирует непосредственно с измеряемым объектом.

3. По приемам сравнения величины с ее мерой выделяют:

1) метод непосредственной оценки;

2) метод сравнения с ее единицей.

Метод непосредственной оценки основан на применении измерительного прибора, показывающего значение измеряемой величины.

Метод сравнения с мерой основан на сравнении объекта измерения с его мерой.

Принцип измерений – это некое физическое явление или их комплекс, на которых базируется измерение.

Погрешность измерения – это разность между результатом измерения величины и настоящим (действительным) значением этой величины.

Точность измерений – это характеристика, выражающая степень соответствия результатов измерения настоящему значению измеряемой величины.

Правильность измерения – это качественная характеристика измерения, которая определяется тем, насколько близка к нулю величина постоянной или фиксировано изменяющейся при многократных измерениях погрешности (систематическая погрешность).

Достоверность измерений – это характеристика, определяющая степень доверия к полученным результатам измерений.

4 Понятие о физической величине Значение систем физических единиц

Физическая величина является понятием как минимум двух наук: физики и метрологии. По определению физическая величина представляет собой некое свойство объекта, процесса, общее для целого ряда объектов по качественным параметрам, отличающееся, однако, в количественном отношении (индивидуальная для каждого объекта). Есть целый ряд классификаций, созданных по различным признакам. Основными из них является деления на:

1) активные и пассивные физические величины – при делении по отношению к сигналам измерительной информации. Причем первые (активные) в данном случае представляют собой величины, которые без использования вспомогательных источников энергии имеют вероятность быть преобразованными в сигнал измерительной информации. А вторые (пассивные) представляют собой такие величины, для измерения которых нужно использовать вспомогательные источники энергии, создающие сигнал измерительной информации;

2) аддитивные (или экстенсивные) и неаддитивные (или интенсивные) физические величины – при делении по признаку аддитивности. Считается, что первые (аддитивные) величины измеряются по частям, кроме того, их можно точно воспроизводить с помощью многозначной меры, основанной на суммировании размеров отдельных мер. А вторые (неаддитивные) величины прямо не измеряются, так как они преобразуются в непосредственное измерение величины или измерение путем косвенных измерений. В 1791 г. Национальным собранием Франции была принята первая в истории система единиц физических величин. Она представляла собой метрическую систему мер. В нее входили: единицы длин, площадей, объемов, вместимостей и веса. А в их основу были положены две общеизвестные ныне единицы: метр и килограмм.

В основу своей методики ученый заложил три основные независимые друг от друга величины: массу, длину, время. А в качестве основных единиц измерения данных величин математик взял миллиграмм, миллиметр и секунду, поскольку все остальные единицы измерения можно с легкостью вычислить с помощью минимальных. Так, на современном этапе развития выделяют следующие основные системы единиц физических величин:

1) система СГС (1881 г.);

2) система МКГСС (конец XIX в.);

3) система МКСА (1901 г.)

1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17 
Рейтинг@Mail.ru